
Introduction to λ-calculus

Nils Gesbert

MOSIG

1



Main Idea

One fundamental notion in mathematics is that of a function.

A function is something which yields a result when given an
argument.

How is a function usually defined?

By a formula containing a variable to represent the function’s argument.
f (x) = x2 + 2x + 1

Given a function’s definition and a value for its argument, how is
the result of the function for this argument usually calculated?

By replacing (substituting) the variable with the argument’s value.
f (3) = 32 + 2 · 3 + 1 = 16

λ-calculus is a formal language which represents that, and just that.
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Context and History
Broad context: research on formal foundations for mathematics
formal logic systems, axiomatic theories (set theory, Peano arithmetic...)

λ-calculus is originally a part of a formal logic system, proposed by
Alonzo Church in 1931 and later abandoned.

Important problem in the 1930s: Some functions can be defined
theoretically, but we do not know how to calculate their value for a
given argument.

How to characterise functions which are ‘effectively calculable’?
(for example, on natural numbers)

1934: Gödel and Herbrand define recursive functions: functions
defined by sets of equations satisfying certain properties.

1936: Church, Kleene and Rosser prove that recursive functions
are equivalent to λ-definable functions.

1936: Turing defines computability in terms of ‘automatic
machines’ and proves that the computable functions are
exactly the λ-definable functions.
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Overview Formal definitions Properties Advanced examples Reduction strategies Typed λ-calculus

Features of the language

Variables: x , y , z , . . .

Two syntactic constructions:
I Function definition: λx · expr

the function f defined by f (x) = expr

I Function application: expr1 expr2
the function expr1 applied to the argument expr2

I Parentheses to avoid ambiguity

One mechanism:
I Substitution: [expr]{x 7→ expr′} is the expression obtained by

replacing all occurrences of x in expr with expr′.
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Examples

I The identity function: id = λx · x

I The function which applies the identity function to its
argument: λy · id y = λy · ((λx · x) y)

I The same function, applied to the identity function:
(λy · id y) id

(These three expressions actually denote the same function)

I The constant function which always returns the identity
function: λy · id

We can define functions of two arguments by encoding them with
two λs: giving the first argument yields a function which waits for
the second one.
I The function which applies its first argument to its second

argument: λx · λy · (x y)

Abbreviation: λx , y · x y
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More examples
So, everything is a function. What operations do we know on
functions?

Composition: (f ◦ g)(x) = f (g(x))
In λ-calculus, the ◦ operator can be defined by:

comp = λf , g · λx · (f (g x))

f ◦ g is then written comp f g as a λ-expression (prefix notation)

We can compose a function with itself (‘square’ it):

h2 = h ◦ h = comp h h = (λf , g · λx · (f (g x))) h h

Applying is done by substituting h for both f and g : it yields

λx · (h (h x))

Hence the squaring function 2 = λh · λx · (h (h x))
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A possible encoding of numbers

Everything is a function, but a lot of things can be represented by
particular functions...

How could we represent numbers?

The number n could be the operation which transforms a function
f into f n, f composed with itself n times:

0. λf · λx · x
1. λf · λx · (f x)

2. λf · λx · (f (f x))

3. λf · λx · (f (f (f x)))

4. λf · λx · (f (f (f (f x))))

9
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Exercise

With this encoding of numbers, how would we write:
I The successor function succ, defined by succ(n) = n + 1?

f n+1(x) = f (f n(x))

I Addition (as a function of two parameters)?

I Multiplication?

f n×m = (f n)m

If n and m are functions representing numbers, what does the
expression mn represent?
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Testing whether a number is 0

Consider the function defined mathematically as follows:

if-zero-then-else(n, x , y) =

{
x if n = 0
y if n > 0

Can we define it in λ-calculus?

Idea: if g is a constant function, then g ◦ g = g .
Thus, gn = g for any n > 0.
But g0 = id.
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Formal definitions

Let V be a countably infinite set of variables.
Expressions of the λ-calculus (also called λ-terms) are defined
inductively as follows:
I Any variable v ∈ V is an expression;
I If v is a variable and expr is an expression, then (λv · expr) is

an expression (called an abstraction);
I If expr1 and expr2 are expressions, then (expr1 expr2) is an

expression (called an application).
(This corresponds to the terms generated by a very simple grammar.)

The reason to assume V is infinite is so that, for any expression expr,
there always exists a variable x ∈ V which does not appear in expr.
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Abbreviations

Omission of parentheses:

I Application has precedence to the left: expr1 expr2 expr3 means
((expr1 expr2) expr3).

I Application has precedence over abstraction: λx · expr1 expr2
means (λx · (expr1 expr2)).

Multiple abstraction:

I λx , y , z · expr means (λx · (λy · (λz · expr))), etc.

14
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Free and bound variables
The sets of free and bound variables of an expression expr are
defined as follows:

Variable: If expr = v then FV (expr) = {v} and BV (expr) = ∅;
Abstraction: If expr = λv · expr′ then FV (expr) = FV (expr′) \ {v}

and BV (expr) = BV (expr′) ∪ {v};
Application: If expr = expr1 expr2 then

FV (expr) = FV (expr1) ∪ FV (expr2) and
BV (expr) = BV (expr1) ∪ BV (expr2).

A closed expression is an expression with no free variables.

As standard in mathematics, the names of bound variables are not
significant: λx · x and λy · y are the same function.
In λ-calculus, two expressions which differ only by the name of their
bound variables are called α-equivalent.

This strong equivalence will be denoted ≡.
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Reduction

The relation of reduction, −→, describes how an expression evolves
when an abstraction is applied to an argument.

It is defined as follows:

I If bound variables of expr contain neither x nor any free
variable of expr′, then

(λx · expr) expr′ −→ [expr]{x 7→ expr′};

I If expr1 ≡ expr′1 and expr′1 −→ expr2, then expr1 −→ expr2;

I If expr1 contains a subexpression expr′1 and expr′1 −→ expr′2,
let expr2 be the result of replacing expr′1 with expr′2 in expr1.
Then: expr1 −→ expr2.
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Example

Let f = (λx · (λx · x) x)λx · x .

The first rule does not apply (variable conflict).
But we have f ≡ (λx · (λy · y) x)λz · z .

Thus, f −→ [(λy · y) x ]{x 7→ λz · z} = (λy · y)λz · z (second rule).

But we also have (λy · y) x −→ x .
Hence, by third rule: f −→ (λx · x)λz · z .

In general, −→ is nondeterministic (we can have expr −→ expr′ and
expr −→ expr′′ with expr′ 6≡ expr′′).
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Multiple reduction, β-equivalence

Reduction steps can be chained.
We write expr1 =⇒ expr2 if we can go from expr1 to expr2 by
chaining one or more reduction steps.

Let expr1 and expr2 be two expressions.
Suppose there exists expr3 such that both expr1 =⇒ expr3 and
expr2 =⇒ expr3.
We can then consider that expr1 and expr2 denote the same
mathematical function.
This is called β-equivalence and written ∼.

Exercise:
I Check that, with our encoding of numbers and operations,

plus 2 2 6≡ mult 2 2 6≡ 2 2, but plus 2 2 ∼ mult 2 2 ∼ 2 2.
I Are our different definitions of plus β-equivalent?
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Outline

Informal overview and first examples

Formal definitions

Fundamental properties of λ-calculus
Normal forms, unicity of normal forms
Turing-completeness

More advanced examples

Reduction strategies

Typed λ-calculus
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Normal forms

Some expressions cannot be reduced (if they contain no
subexpression of the form (λx · expr) expr′).

Examples: x ; x y ; λx · x .

Such expressions are called normal forms. We write expr 6→ to
indicate that expr is a normal form.

Theorem (Church and Rosser): Let expr be an expression. Suppose
expr =⇒ expr1 6→ and expr =⇒ expr2 6→.
Then expr1 ≡ expr2.
In other words, even though −→ is nondeterministic, applying it
repeatedly until we reach a normal form always gives the same
result (up to renaming).

This result is called the normal form of expr.

Exercise: calculate the normal form of mult 2 2.
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Exercise

I Prove that all closed normal forms are abstractions, i. e. of the
form λx · expr.

I Can you write an expression which has no normal form?

I Two functions are equal in the mathematical sense if they
always both give the same result for a given argument
(extensional equality).
Verify that, even though id 6∼ 1, these two functions are equal
in that sense.

This is called η-equivalence; we will not use it.
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λ-definability

Let f : Nk → N be a mathematical function of k arguments from
natural numbers to natural numbers. Let Dom(f ) be the set of
k-uples for which f is defined.
If n is a number, we write 〈n〉 the encoding of this number in
λ-calculus.

f is said to be λ-definable if there exists an expression f of the
λ-calculus such that:
I For all (n1, . . . , nk) ∈ Dom(f ), we have:

f 〈n1〉 . . . 〈nk〉 =⇒ 〈f (n1, . . . , nk)〉

I For all (n1, . . . , nk) ∈ Nk \Dom(f ), f 〈n1〉 . . . 〈nk〉 has no
normal form.

Theorem (Turing): A function is λ-definable if and only if it is
computable by a [Turing] machine.
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Pairs

We can encode functions of several arguments. What about
functions which return several results?

Can we encode a pair of values into one single value?

Wanted properties of a pair:
I We can build it from the two values;
I We can extract from it either the first or the second value.

pair x y could be a function which returns either x or y depending
on its argument (recall the test of slide 11).

Simplest way to do it: pair = λx , y · λz · z x y

The functions giving back either value from a pair are then:
fst = λp · p λx , y · x
snd = λp · p λx , y · y

24



Overview Formal definitions Properties Advanced examples Reduction strategies Typed λ-calculus

Pairs

We can encode functions of several arguments. What about
functions which return several results?

Can we encode a pair of values into one single value?

Wanted properties of a pair:
I We can build it from the two values;
I We can extract from it either the first or the second value.

pair x y could be a function which returns either x or y depending
on its argument (recall the test of slide 11).

Simplest way to do it: pair = λx , y · λz · z x y

The functions giving back either value from a pair are then:
fst = λp · p λx , y · x
snd = λp · p λx , y · y

24



Overview Formal definitions Properties Advanced examples Reduction strategies Typed λ-calculus

Pairs

We can encode functions of several arguments. What about
functions which return several results?

Can we encode a pair of values into one single value?

Wanted properties of a pair:
I We can build it from the two values;
I We can extract from it either the first or the second value.

pair x y could be a function which returns either x or y depending
on its argument (recall the test of slide 11).

Simplest way to do it: pair = λx , y · λz · z x y

The functions giving back either value from a pair are then:
fst = λp · p λx , y · x
snd = λp · p λx , y · y

24



Overview Formal definitions Properties Advanced examples Reduction strategies Typed λ-calculus

Pairs

We can encode functions of several arguments. What about
functions which return several results?

Can we encode a pair of values into one single value?

Wanted properties of a pair:
I We can build it from the two values;
I We can extract from it either the first or the second value.

pair x y could be a function which returns either x or y depending
on its argument (recall the test of slide 11).

Simplest way to do it: pair = λx , y · λz · z x y

The functions giving back either value from a pair are then:
fst = λp · p λx , y · x
snd = λp · p λx , y · y

24



Overview Formal definitions Properties Advanced examples Reduction strategies Typed λ-calculus

Pairs

We can encode functions of several arguments. What about
functions which return several results?

Can we encode a pair of values into one single value?

Wanted properties of a pair:
I We can build it from the two values;
I We can extract from it either the first or the second value.

pair x y could be a function which returns either x or y depending
on its argument (recall the test of slide 11).

Simplest way to do it: pair = λx , y · λz · z x y

The functions giving back either value from a pair are then:
fst = λp · p λx , y · x
snd = λp · p λx , y · y

24



Overview Formal definitions Properties Advanced examples Reduction strategies Typed λ-calculus

Pairs

We can encode functions of several arguments. What about
functions which return several results?

Can we encode a pair of values into one single value?

Wanted properties of a pair:
I We can build it from the two values;
I We can extract from it either the first or the second value.

pair x y could be a function which returns either x or y depending
on its argument (recall the test of slide 11).

Simplest way to do it: pair = λx , y · λz · z x y

The functions giving back either value from a pair are then:
fst = λp · p λx , y · x
snd = λp · p λx , y · y

24



Overview Formal definitions Properties Advanced examples Reduction strategies Typed λ-calculus

The predecessor function
We now want to define a function returning 〈n− 1〉 when given 〈n〉.

In other words, given the operation ‘apply a function n times’, we
want to build the operation ‘apply a function n − 1 times’.

Idea: we apply n times a function g which applies f but also
remembers the result of the previous iteration.
Such a function could take and return a pair.

For example:
if g(cur , prev) = (f (cur), cur), then gn(x , y) = (f n(x), f n−1(x))
(if n > 0).
Thus, snd ◦ gn(x , y) = f n−1(x).

In λ-calculus: g = λp · pair (f (fst p)) (fst p)

And so we can write:

pred = λn, f , x · snd (n g (pair x x))

(In that example, pred 0 =⇒ 0.)
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Data structures
The encoding of pairs can be generalised to tuples of any size.
Structures with a fixed number of fields are just a variant of tuples.

But how to encode data of variable length?
For example, an optional value.
Wanted properties of an option:
I There is a constant none representing an option with no value;
I There is a constructor some such that some x represents an

option containing x ;
I When using an option, we can decide what to do depending

whether the option contains a value or not.
For example, writing switch option case-none case-some which
returns case-none if the option is empty and applies case-some
to the option’s content otherwise.

One possibility: none and some x are functions of two parameters;
these two parameters represent case-none and case-some. In that
case, switch has nothing to do (but we can use it for clarity).
none = λn, s · n; some = λx , n, s · s x ; switch = λo, n, s · o n s
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Exercises

I Write a function if-smaller-then-else of 4 arguments
m, n, x , y , which, assuming m and n encode numbers, returns
x if m 6 n and y otherwise.

I Propose a way to encode binary trees whose internal nodes are
labelled with numbers.

27



Overview Formal definitions Properties Advanced examples Reduction strategies Typed λ-calculus

Recursion
Structures like trees or lists are recursive (a tree has subtrees).

Working with such structures calls for recursive functions.

For example, inserting a new value in a binary search tree:
I empty tree → return a new tree containing just the new value;
I nonempty tree → compare the new value with the root label,

and insert it into the left or right subtree (recursive call)
depending on the result.

Like this:

insert = λt, v · switch t (tree v none none)
λw , l , r · if-smaller-then-else v w

(treew (insert l v) r)
(treew l (insert r v))

But in principle, a function in λ-calculus cannot call itself.

28



Overview Formal definitions Properties Advanced examples Reduction strategies Typed λ-calculus

Recursion
Structures like trees or lists are recursive (a tree has subtrees).
Working with such structures calls for recursive functions.

For example, inserting a new value in a binary search tree:
I empty tree → return a new tree containing just the new value;
I nonempty tree → compare the new value with the root label,

and insert it into the left or right subtree (recursive call)
depending on the result.

Like this:

insert = λt, v · switch t (tree v none none)
λw , l , r · if-smaller-then-else v w

(treew (insert l v) r)
(treew l (insert r v))

But in principle, a function in λ-calculus cannot call itself.

28



Overview Formal definitions Properties Advanced examples Reduction strategies Typed λ-calculus

Recursion
Structures like trees or lists are recursive (a tree has subtrees).
Working with such structures calls for recursive functions.

For example, inserting a new value in a binary search tree:

I empty tree → return a new tree containing just the new value;
I nonempty tree → compare the new value with the root label,

and insert it into the left or right subtree (recursive call)
depending on the result.

Like this:

insert = λt, v · switch t (tree v none none)
λw , l , r · if-smaller-then-else v w

(treew (insert l v) r)
(treew l (insert r v))

But in principle, a function in λ-calculus cannot call itself.

28



Overview Formal definitions Properties Advanced examples Reduction strategies Typed λ-calculus

Recursion
Structures like trees or lists are recursive (a tree has subtrees).
Working with such structures calls for recursive functions.

For example, inserting a new value in a binary search tree:
I empty tree → return a new tree containing just the new value;

I nonempty tree → compare the new value with the root label,
and insert it into the left or right subtree (recursive call)
depending on the result.

Like this:

insert = λt, v · switch t (tree v none none)
λw , l , r · if-smaller-then-else v w

(treew (insert l v) r)
(treew l (insert r v))

But in principle, a function in λ-calculus cannot call itself.

28



Overview Formal definitions Properties Advanced examples Reduction strategies Typed λ-calculus

Recursion
Structures like trees or lists are recursive (a tree has subtrees).
Working with such structures calls for recursive functions.

For example, inserting a new value in a binary search tree:
I empty tree → return a new tree containing just the new value;
I nonempty tree → compare the new value with the root label,

and insert it into the left or right subtree (recursive call)
depending on the result.

Like this:

insert = λt, v · switch t (tree v none none)
λw , l , r · if-smaller-then-else v w

(treew (insert l v) r)
(treew l (insert r v))

But in principle, a function in λ-calculus cannot call itself.

28



Overview Formal definitions Properties Advanced examples Reduction strategies Typed λ-calculus

Recursion
Structures like trees or lists are recursive (a tree has subtrees).
Working with such structures calls for recursive functions.

For example, inserting a new value in a binary search tree:
I empty tree → return a new tree containing just the new value;
I nonempty tree → compare the new value with the root label,

and insert it into the left or right subtree (recursive call)
depending on the result.

Like this:

insert = λt, v · switch t (tree v none none)
λw , l , r · if-smaller-then-else v w

(treew (insert l v) r)
(treew l (insert r v))

But in principle, a function in λ-calculus cannot call itself.

28



Overview Formal definitions Properties Advanced examples Reduction strategies Typed λ-calculus

Recursion
Structures like trees or lists are recursive (a tree has subtrees).
Working with such structures calls for recursive functions.

For example, inserting a new value in a binary search tree:
I empty tree → return a new tree containing just the new value;
I nonempty tree → compare the new value with the root label,

and insert it into the left or right subtree (recursive call)
depending on the result.

Like this:

insert = λt, v · switch t (tree v none none)
λw , l , r · if-smaller-then-else v w

(treew (insert l v) r)
(treew l (insert r v))

But in principle, a function in λ-calculus cannot call itself.
28



Overview Formal definitions Properties Advanced examples Reduction strategies Typed λ-calculus

Haskell Curry’s Y combinator

A workaround (among others) is Curry’s Y combinator:

Y = λf · (λx · f (x x))λx · f (x x)

This expression has no normal form!
We have Y =⇒ λf · f (f (. . . ((λx · f (x x))λx · f (x x)) . . .)) for
any number of f s.

In fact, we have Y g ∼ g(Yg).

So, let:
ins = λi , t, v · switch t (tree v none none)
λw , l , r · if-smaller-then-else v w (treew (i l v) r) (treew l (i r v))

and let insert = Y ins.

Then insert t v ∼ ins insert t v . This is what we want!
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Infinite reduction sequences

By definition, any expression without a normal form must admit an
infinite reduction sequence expr1 −→ expr2 −→ . . . −→ . . .

It is also possible for an expression with a normal form to admit
such an infinite sequence, if:
I some subexpression has no normal form, but
I this subexpression can disappear in a reduction.

Typical example: (λx · id) ((λx · x x) (λx · x x))
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Normal order of reduction

The normal order of reduction means that, when several reductions
of expr are possible, we always choose the one which involves the
leftmost possible occurrence of λ.

Example: consider λx · (λy · (λz · z) y) ((λt · t) x):

I There are three possibilities of reduction: one involving λy ,
one involving λz , and one involving λt.

I The leftmost one involves λy , this is the one we apply first.

Theorem: Applying the normal order of reduction always reaches
the normal form, if a normal form exists.

Intuitively: We always apply a function before looking inside either
its body or its arguments.
This way, if a subexpression with no normal form can get discarded,
we make sure this happens before we try to reduce it.

Exercise: reduce Y0 using the normal order of reduction.
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Applicative order of reduction

On the opposite, the applicative strategy restricts the reduction rule
(λx · expr) expr′ −→ [expr]{x 7→ expr′} by only allowing it if expr′ is
in normal form.

In other words, we must always reduce the argument of a function
fully before applying that function.

This strategy does not completely enforce the reduction order, but
can be implemented for example by always starting with the
rightmost λ possible.

Theorem: Reducing an expression expr with the applicative strategy
reaches a normal form only if every subexpression of expr has a
normal form.

This is useful if we consider the meaning of an expression to be its
normal form, and we do not want a meaningful expression to have
meaningless parts — this corresponds to Church’s original idea.
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The programming language point of view

If we want to use functions like Y, saying that the ‘value’ of an
expression is its normal form is too restrictive (even insert has no
normal form, but it is an interesting function).

If we see λ-calculus as a programming language, we can consider
the body of an abstraction as ‘instructions’ for computing the
result.
In that ‘operational’ view, instructions inside the body are followed
only once an argument has been given.

In programming-language strategy, reductions never occur inside
abstractions.
Abstractions are called values, and reduction stops as soon as it
reaches a value. This is called evaluating the expression.

Drawback: Apparently different values may in fact be β-equivalent.
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Strict or lazy evaluation

The call-by-name evaluation strategy corresponds to normal order.
It always terminates if terminating is possible.

Call-by-name avoids evaluating an argument which will not be used.
But it may lead to evaluating the same argument more than once.
A variant is call-by-need or lazy evaluation: occurrences of the
argument variable are replaced with a pointer to the unevaluated
argument, and once it is evaluated they all point to the result.

The strict or call-by-value evaluation strategy corresponds to
applicative order. It always evaluates arguments before applying a
function, which may prevent terminating.
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Features of strict vs. lazy evaluation
In pure λ-calculus, evaluation order does not matter.
However, most programming languages allow control instructions
(typically I/O: write to a file etc.) in the bodies
of functions. In that case, evaluation order can matter.

‘Impure’ λ-based languages use strict order (easier to predict).
In strict evaluation, unlike in complete applicative-order reduction,
it is still possible to postpone a reduction for later by wrapping it in
a function.
For example: if-zero-then-else 0 0 ((λx · x x) (λx · x x))
does not terminate.
But (if-zero-then-else 0 (λy · 0)λy · (λx · x x) (λx · x x)) id
does terminate.
Similarly, Y = λf · (λx · f (x x))λx · f (x x) can be replaced with
Z = λf · (λx · f (λy · x x y))λx · f (λy · x x y).
In practice, strict languages make exceptions for some special
functions (if, and, or, switch. . . ) which are always evaluated lazily.
And they allow defining recursive functions directly.
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λ-calculus in programming languages: a few dates
I λ-calculus is defined in the 1930s.

I Digital programmable computers appear in the 1940s. They
are first programmed with mechanical switches, then in
machine language, then in assembly language.

I Higher-level programming is developed in the 1950s. First
widely-used languages: Fortran (1957); Lisp (1958); Algol
(1958); Cobol (1959).

I Lisp introduces the lambda keyword. But it does not
implement substitution properly.

I In the 1970s, functional programming starts developing.
Scheme is a Lisp variant following λ-calculus semantics. ML
(ancestor of SML, OCaml, F#) implements a typed
λ-calculus. Both are impure and strict.

I Miranda (1985) implements lazy evaluation.
I 1990: first version of Haskell (named after Haskell Curry), now

the reference lazy functional language, which features a
sophisticated type system.
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Base values and type errors

In theoretical λ-calculus, basic values like numbers are represented
by particular functions.
In practice, on a computer, better-suited internal representations
are used for data, and the syntax is extended to allow literal
constants in addition to variables.

But then, applying a number to an argument is not possible.

Lisp variants (like Scheme), or languages like Python, use dynamic
typing to deal with that. If at some point a number should be
applied to an argument, the program stops with an error.

But λ-calculus, as a formal language, is well suited to analyzing
expressions statically, before reduction, to make sure such type
errors cannot happen.
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The simply-typed λ-calculus

Originally defined by Church to filter out ‘paradoxical’ expressions
from λ-calculus, it predates computers.

Principle: we start from a certain set B of base types and extend
the syntax of expressions to allow literal constants, distinct from
variables. Each literal has one of the base types.

Then types τ are defined inductively:
I Base types are types, representing the various literals;
I If τ1 and τ2 are types, τ1 → τ2 is a type, representing the

functions which take a parameter of type τ1 and return a
result of type τ2.

Example: plus has type int→ (int→ int)
Commonly, → is taken to have precedence on the right, so we can
write this type int→ int→ int.
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The simply-typed λ-calculus (continued)
The syntax of abstractions becomes λx : τ · expr where τ is a type.

Types of all expressions can then be computed using typing rules.

Typing rules look like:
premise (‘if’ part)

conclusion (‘then’ part)
.

They use typing environments Γ associating variables to types, and
typing judgements Γ ` expr : τ indicating that: ‘if the variables
have the types specified in Γ, then expr has the type τ ’.
And the rules of simply-typed λ-calculus are:

variable
Γ(x) = τ

Γ ` x : τ

literal
expr is a literal of type τ

Γ ` expr : τ

application
Γ ` expr1 : τ → τ ′ Γ ` expr2 : τ

Γ ` expr1 expr2 : τ ′

abstraction
Γ, x : τ ` expr : τ ′

Γ ` λx : τ · expr : τ → τ ′

Closed expressions are typed in empty environments.
In that case, we write ` expr : τ .
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Features of the simply-typed λ-calculus

Some expressions cannot be typed, in particular applications when
the argument’s type does not match the expected type: this
corresponds to static type errors.

Type preservation: if Γ ` expr : τ and expr −→ expr′, then
Γ ` expr′ : τ .
This is expected of any static type system.

Strong normalisation: if Γ ` expr : τ , then there exists a normal
form expr′ such that expr =⇒ expr′ (and Γ ` expr′ : τ).
This is unusual and specific to this type system.

Since the type of an expression can be easily computed by an
algorithm, and the evaluation of any typable expression always
terminates, it means the simply-typed λ-calculus is not
Turing-complete anymore.
In particular, recursive functions are not typable in this system.

42



Overview Formal definitions Properties Advanced examples Reduction strategies Typed λ-calculus

Features of the simply-typed λ-calculus

Some expressions cannot be typed, in particular applications when
the argument’s type does not match the expected type: this
corresponds to static type errors.

Type preservation: if Γ ` expr : τ and expr −→ expr′, then
Γ ` expr′ : τ .

This is expected of any static type system.

Strong normalisation: if Γ ` expr : τ , then there exists a normal
form expr′ such that expr =⇒ expr′ (and Γ ` expr′ : τ).
This is unusual and specific to this type system.

Since the type of an expression can be easily computed by an
algorithm, and the evaluation of any typable expression always
terminates, it means the simply-typed λ-calculus is not
Turing-complete anymore.
In particular, recursive functions are not typable in this system.

42



Overview Formal definitions Properties Advanced examples Reduction strategies Typed λ-calculus

Features of the simply-typed λ-calculus

Some expressions cannot be typed, in particular applications when
the argument’s type does not match the expected type: this
corresponds to static type errors.

Type preservation: if Γ ` expr : τ and expr −→ expr′, then
Γ ` expr′ : τ .
This is expected of any static type system.

Strong normalisation: if Γ ` expr : τ , then there exists a normal
form expr′ such that expr =⇒ expr′ (and Γ ` expr′ : τ).
This is unusual and specific to this type system.

Since the type of an expression can be easily computed by an
algorithm, and the evaluation of any typable expression always
terminates, it means the simply-typed λ-calculus is not
Turing-complete anymore.
In particular, recursive functions are not typable in this system.

42



Overview Formal definitions Properties Advanced examples Reduction strategies Typed λ-calculus

Features of the simply-typed λ-calculus

Some expressions cannot be typed, in particular applications when
the argument’s type does not match the expected type: this
corresponds to static type errors.

Type preservation: if Γ ` expr : τ and expr −→ expr′, then
Γ ` expr′ : τ .
This is expected of any static type system.

Strong normalisation: if Γ ` expr : τ , then there exists a normal
form expr′ such that expr =⇒ expr′ (and Γ ` expr′ : τ).

This is unusual and specific to this type system.

Since the type of an expression can be easily computed by an
algorithm, and the evaluation of any typable expression always
terminates, it means the simply-typed λ-calculus is not
Turing-complete anymore.
In particular, recursive functions are not typable in this system.

42



Overview Formal definitions Properties Advanced examples Reduction strategies Typed λ-calculus

Features of the simply-typed λ-calculus

Some expressions cannot be typed, in particular applications when
the argument’s type does not match the expected type: this
corresponds to static type errors.

Type preservation: if Γ ` expr : τ and expr −→ expr′, then
Γ ` expr′ : τ .
This is expected of any static type system.

Strong normalisation: if Γ ` expr : τ , then there exists a normal
form expr′ such that expr =⇒ expr′ (and Γ ` expr′ : τ).
This is unusual and specific to this type system.

Since the type of an expression can be easily computed by an
algorithm, and the evaluation of any typable expression always
terminates, it means the simply-typed λ-calculus is not
Turing-complete anymore.
In particular, recursive functions are not typable in this system.

42



Overview Formal definitions Properties Advanced examples Reduction strategies Typed λ-calculus

Features of the simply-typed λ-calculus

Some expressions cannot be typed, in particular applications when
the argument’s type does not match the expected type: this
corresponds to static type errors.

Type preservation: if Γ ` expr : τ and expr −→ expr′, then
Γ ` expr′ : τ .
This is expected of any static type system.

Strong normalisation: if Γ ` expr : τ , then there exists a normal
form expr′ such that expr =⇒ expr′ (and Γ ` expr′ : τ).
This is unusual and specific to this type system.

Since the type of an expression can be easily computed by an
algorithm, and the evaluation of any typable expression always
terminates, it means the simply-typed λ-calculus is not
Turing-complete anymore.

In particular, recursive functions are not typable in this system.

42



Overview Formal definitions Properties Advanced examples Reduction strategies Typed λ-calculus

Features of the simply-typed λ-calculus

Some expressions cannot be typed, in particular applications when
the argument’s type does not match the expected type: this
corresponds to static type errors.

Type preservation: if Γ ` expr : τ and expr −→ expr′, then
Γ ` expr′ : τ .
This is expected of any static type system.

Strong normalisation: if Γ ` expr : τ , then there exists a normal
form expr′ such that expr =⇒ expr′ (and Γ ` expr′ : τ).
This is unusual and specific to this type system.

Since the type of an expression can be easily computed by an
algorithm, and the evaluation of any typable expression always
terminates, it means the simply-typed λ-calculus is not
Turing-complete anymore.
In particular, recursive functions are not typable in this system.

42



Overview Formal definitions Properties Advanced examples Reduction strategies Typed λ-calculus

Possible extensions
Algebraic datatypes: product types (to represent tuples) and
choice types (to represent options, or more generally a container
whose content may have several different types).
The combination of the two allows defining lists, trees, etc.

A specific rule for recursion: instead of using Y (which is not
typable), we use a special syntax letrec f : τ = expr where f is
allowed to occur inside expr.

Then the typing rule says:
Γ, f : τ ` expr : τ

Γ ` letrec f : τ = expr : τ
With this rule, we lose strong normalisation.
Polymorphism: Some functions can work with arguments of any
type: for example, the identity function. In the simply-typed
λ-calculus, there is a different identity function for each type.
The type language can be extended with polymorphic types like
∀α.α→ α.
For example, comp in such a system has type
∀α, β, γ.(α→ β)→ (γ → β)→ γ → α.
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Type inference
Type inference can be used to remove the need for type
annotations in λx : τ · expr.

The Hindley-Milner type system, first used in the ML language, is
the most common type inference system for the λ-calculus.
Idea: To infer the type of λx · expr, a type variable is created to
represent the type of x . Then when analyzing expr, equations
involving this type variable are generated.
The equations are then solved using the unification algorithm. If
there is a solution, it gives the type of the expression.
Example: comp = λf , g , x · f (g x)

I We start with f : α, g : β, x : γ.
I g is applied to x , therefore β = γ → δ.
I (g x) has type δ and f is applied to it, therefore α = δ → ε.
I Then f (g x) has type ε, and comp : α→ β → γ → ε.
I Applying unification gives the final type

(δ → ε)→ (γ → δ)→ γ → ε.
I In the end, the remaining variables are generalized with ∀.
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