THE NEGOTIATION OF MULTIMEDIA CONTENT
SERVICES IN HETEROGENEOUS ENVIRONMENTS

TAYEB LEMLOUMA AND NABIL LAYAiDA
OPERA Project, INRIA Rhone-Alpes
ZIRST-655 Avenue de I’Europe -88330 Montbonnot Saint Martin France.
Phone: +33 4 76 61 52 81 / +33 4 76 61 58 84 Fax: +33 4 76 61 52 07
E-mail: Tayeb.Lemlouma@inrialpes.fr, Nabil. Layaida@inrialpes.fr

Few number of works have discussed the problem of multimedia services negotiation
in heterogeneous environments. This paper presents a new negotiation strategy of
services in such environments. This strategy is based on the concept of profiling
and document selection. We show how CC/PP-RDF model can be used to describe
clients preferences and capabilities, and how SMIL 2.0 modularization can serve
as a basis to ensure services profile definition. We give the rules to follow in order
to achieve the negotiation task. The negotiation protocol that we propose uses
a method of profiling evaluation that we call the TL evaluation. We show how
our protocol can respond efficiently to a best deliverance of adapted multimedia
services for the end users, while taking into account device limitations and user
preferences.

1 Introduction

Heterogeneous multimedia environments are characterized by the presence of
a wide variety of client devices, which are very heterogeneous with respect to
their capacity in terms of memory, CPU or display, etc. A device can be a
workstation, laptop, WAP phone, PDA or any other terminal. In order to offer
services and satisfy the needs of such different terminal types, the multimedia
system must be adaptable to obey users and environment constraints: user
interests or preferences, terminal capabilities, service requirements, charac-
teristics of the network and location information. A negotiation mechanisms
must be designed to enable interactions between servers of content and users.
The goal of this operation is to make these parties reach an agreement (a
consensus) on the best service to be delivered.

Few numbers of works have explored negotiation and adaptation frame-
works for such systems. In the present paper, the adaptable multimedia sys-
tems is discussed in a general way, which means that the considered architec-
ture isn’t depending specifically on any particular kind of devices or networks.
This approach permits to give general solutions deployable at a very large
scale, for example, the web.

Providing a global architecture that ensures negotiable multimedia ser-
vices requires different components: document and user profiling specifica-

tion, transformation and adaptation methods, client/server negotiation mech-
anisms and rules followed by these mechanisms represent the main components
of the aimed architecture.

As we will see later in the paper, the XML mode and related tools
represent the basis of our framework. It provides many advantages such as
the clean separation between the content and its presentation and a common
representation that can be communicated between different platforms and
system entities. CC/PP ? and RDF !* can guarantee a good description of
the environment capacities and preferences. Document profiling can be nicely
achieved using an extensible mechanism like the SMIL Basic profile 8. This
profile can be augmented by the incorporation of new modules of the super
set defined by the SMIL 2.0 profile !°. Transformation mechanisms, based
on but not limited to XSLT 24, represent an efficient manner to ensure the
content transformation in such architectures.

The central aspect of our paper is a negotiation strategy that can be
executed in order to guide the adaptation process and documents selection.
The negotiation is based on an algorithm that uses a new method of profiles
selection, that we call the TL evaluation. The later permits to return an
ordered set of profiles that can respond to the client demand according to its
needs and preferences.

The paper is organized in seven sections. In the second section, we discuss
the profiling concept and we show its importance in describing the context
of services negotiation. The concept is discussed from the client and the
document side. In the third section, we introduce the modularization principle
introduced in SMIL. Section 4 introduces the content negotiation task and
its requirements. Section 5 discusses the proposed negotiation strategy. In
section 6, we propose our negotiation protocol and we introduce a new method
of profiles selection. We show how our protocol helps to make server and users
agree on the best adapted services. In section 7, we give a conclusion of our
work and present some future work.

123

2 Universal profiling

The first step, which precedes any negotiation process, is ensuring a good de-
scription of the environment. Client/server interactions in a negotiation need
the complete description of their mutual constraints in order to identify the
best service. This description must include all the environment components,
i.e. services, terminals, users, networks etc. The description covers two sides:
Hardware and Software. In the hardware side, a device augments the con-
straint set with its physical capacities and capabilities. For example with its

screen display resolution, etc. In the software side, the user agent is described
in terms of supported functionality; for example a user agent can support a
particular type of language or protocol. Note that hardware and software de-
scriptions may be dependent, consequently any adaptation process must take
into account both aspects. For example, consider a Screen-Phone accessing to
the web through a browser with a screen size of ’240x320 and 8 colors’, and
’the browser supports only GIF and JPEG image formats but doesn’t sup-
port scrolling’. In that case, the browser can’t display a GIF (or JPEG) image
directly without applying a size transformation to fit the hardware constraint.

2.1 User profiling

The user profile contains a description of the resources and capabilities of
the user. Following the web standards, a good solution is to use CC/PP 9,
which is based on the RDF meta data description model *. A CC/PP profile
describes client capabilities and preferences in terms of attributes for each
component. An example of a profile, will be the one including the following
essential components: hardware platform, software platform and user applica-
tion. With CC/PP, model extensibility is always possible, since RDF permits
the modeling of a wide range of data structures. However it is recommended
to avoid complex data models for profile attribute values.

2.2 CC/PP Profile structure

Handling profiles requires to conform a given syntax that will help profile pro-
cessors to achieve their tasks properly. Following the CC/PP model, a profile
is composed of a number of components, represented by resources of type
’ccpp:component’ and related to the client profile by a ’ccpp:component’ prop-
erty. The type of a component may be indicated by a ’rdf:type’ property, or
equivalent RDF structure. Attributes are represented as 'named properties’,
linking a ’subject resource’ to an associated ’object resource’ or literal value.
It’s important to note that RDF offers the possibility to indicate a resource
description in a separate document. In this case, the document is identified us-
ing "Uniform Resource Identifiers’ (URIs)2. For example, a resource’s default
property may be specified using a URI reference. In this case, the URI part of
the default resource identifier is used to retrieve an RDF document containing
the default resource description. Thus, if the default resource is named
’http://Company-resources.fr/ WAPDeviceProfile#tHardwarePlatform’, the
URI ’http://Company-resources.fr/ WAPDeviceProfile’ is used to

retrieve an RDF document, and the resource identified -locally- by #Hard-
warePlatform within that document, is taken as the default resource. In such

case, the resource might be defined within the target document using:
about="http://Company-resources.fr/ WAPDeviceProfilet HardwarePlatform’
or ID="HardwarePlatform’.

Examples of a CC/PP profile in the form of an RDF graph notation can be
found in °.

2.8 Document profiling

The concept of a document profile is complementary to the user profile. A
document profile specifies the syntax and semantics of a document or a collec-
tion of documents (DTD or document type). Document profiling allows easy
handling and processing of the specified group of documents. The profile spec-
ification gives a detailed description about the appropriate type, for example
in terms of supported image formats, scripting level, etc. The central aspect
of this approach is the definition of the elementary functionality required for
the rendering of multimedia documents. Once this is step is achieved, super
sets -built based on the elementary predefined elements- can thus be described
in terms of functionality: 1) What does exactly the user agent supports and,
2) What does exactly the server of content offer.

The first point concerns the client side. Here the user agent (or which is
commonly known as a player) can be designed in a way that guarantees the
best client use of the served content. The second point concerns the server side,
it requires a complete description of all the content versions potentially useful
for the client. This description helps to guide the content delivery based on the
global picture of the client capacities and the available content services. This
principle allows determining, if necessary, the content transformations which
allow to create custom documents with the demanded set of functionalities.

3 The modularization principle

The main goal of the modularization is to move, from monolithic languages
such as older versions of HTML, to more flexible and scalable languages adapt-
able to a variety of constraints. The modularization permits to support new
devices and applications, by defining subsets of modules and recombining
them. For example we can provide services for a WAP phone which may only
support a subset of predefined modules. The modularization doesn’t concern
only the server’s side (services). The modules or functionality supported by
a device must also be defined in order to guide the server identifying the best
content to be delivered.

The 'SMIL 2.0’ approach provides good descriptions of abstract function-

ality collections, either on the client side or on the server one. SMIL 2.0 2°
offers a scalable framework for encoding several aspects of multimedia pre-
sentations. It specifies what media items will be presented, when, where and
how. It also accounts for whom the media is played and, the most important,
how the presentation is adapted for different end users on different contexts.
This last point can be ensured, for instance, using the switch element and
the test attributes. So we can specify that one or zero selections are to be
made among a set of alternatives for inclusion at individual locations in the
temporal hierarchy of a SMIL document® 2%16. Alternatives can be used,
for example, to give different formats of a media object according to client
preferences and capabilities. In addition, some of the document alternatives
related to the environment can be evaluated on the server and the result sent
to the client. This allows to reduce the the document size and prevents the
user agent from exploring some of the switch branches.

In addition to using SMIL to encode rich multimedia content, the mod-
ularization of SMIL !%!® permits to cover and describe the diversity of the
environment functionality, which allows easy design of negotiation strategies.
The use of the SMIL modules has already gained an important acceptance,
such as in the third Generation Partnership Project (3GPP)3.

3.1 The SMIL profiling model

The importance of SMIL model is that it allows the definition of a collection of
individual modules. Each module (or functionality) can be incorporated into
other XML languages. This makes SMIL facilities usable in different types
of documents and presentations. SMIL ?° defines a module as a collection
of semantically related XML elements, attributes and attribute values that
represents a unit of functionality. This definition allows, by composition, the
creation of new languages, called language profiles, based on the combination
of atomic modules. The same principle allows the servers to adapt the con-
tent when providing services. This approach requires a complete description
of the supported functionality in the multimedia environment. The SMIL 2.0
specification responds to these needs through a naming scheme of its mod-
ules (see "The SMIL 2.0 modules’ section of 2). SMIL 2.0 modules may be
independent, or related by dependency relations. For example, 'BasicLayout’
and ’BasicLinking’ are independent modules but 'BasicAnimation’ module
depends on the 'BasicLayout’ module.

%an alternative approach of the SMIL ’switch’, called CMIF Channel model, is presented
in 3, but is equivalent to a set of ’switch’ statements.

A language profile must include all the modules on which de-
pends other included modules (figure 3.1)). New languages must be
build on the base of this constraint. According to the specification
of 19 each module is named with a unique identifier associated with
it, for instance the identifier of the ’Structure’ module is given as:
*http:/ /www.w3.0rg/2000/SMIL20/CR/Structure’.

In the context of heterogeneous environments a common description of the
different, constraints is important. Generic descriptions enables the construc-
tion of common building blocks for user agents and document descriptions.
Furthermore, it allows -when respected during document authoring- to obtain
more interoperability since documents are initially created to be used under
different platforms®. The scalability framework defined for the SMIL Basic
Language profile 18 can be efficiently used to reach this goal.

The SMIL Basic makes multimedia authoring available for a large number
of web users and not especially those running under a ’rich media’ context.
The SMIL Basic profile consists of a reduced subset of the full SMIL modules®.
It may be supported by a wide variety of SMIL players even those running, for
instance, on mobile devices with limited resources such as : small displays,
limited network connectivity, limited input methods, etc. SMIL Basic has
been recently adopted by the 3GPP Consortium in the scene descriptions of
the PSS “clients and servers 8. Indeed PSS SMIL collection, includes the
SMIL 2.0 Basic language profile plus three additional modules.

M1: Basic Animation

A dependency relation °

M4: Basic Linking
°

Y~ Language Profile 1

Language Profile 2

Figure 3.1: SMIL profiling

bfor more details see the notion of language profile conformance in 19: "The SMIL 2.0
modules’ section.

¢conformance between SMIL Basic and SMIL Language 2.0 holds.

dPacket-switched Streaming Service.

A typical use of our architecture can be described by: —A client that sup-
ports a SMIL player, and —A server that provides content authored following
the SMIL Basic model. The last requirement means that the content must be
either authored in the SMIL Basic manner or transformed into it.

The goal of the negotiation is to ensure a form of consensus between
servers and demanders. The server of services represents multimedia content
servers or intermediate proxies acting as adaptable content servers. Deman-
ders represent the set of clients and the proxies. From the client perspective,
the global architecture of the multimedia system can be seen as a black box
which admits as inputs client requests, and outputs services. It contains
mainly two tasks: the negotiation task and the adaptation task. Requests
can be exchanged between the client and the server in order to achieve the
negotiation step. The final choice of the adapted service is the result of the
negotiation step (figure 3.1)).

Client Request _L ::[Services Delivery}

Figure 3.1: A global view of service adaptation and negotiation
architecture

Adaptation

c
8
ks
=
o
>
[}
=z

Ensuring a complete negotiation architecture means:

1. To take into account the diversity of users capacities and also preferences
(for example an XML web page requirements) and to specify and apply
rules allowing to match these requirements.

2. To determine target formats of services in term of selected set of modules.

3. To determine the transformations to achieve (how to transform and which
ones to apply).

4. To support user agents constraint changes.

An efficient negotiation process, requires knowing many details about the tar-
get schema. However, we think that negotiation solutions must use a common
set of concepts and tools independently from the target environment under
which it will be applied.

3.2 Negotiation requirements

One negotiation approach is based on the document selection principle. In
this approach, documents must be authored in many versions, for instance
with different multi-lingual support or in different levels of abstractions. Here
the multi-authoring depends on the diversity of client constraints. Document
selection consists to choose the nearest document in terms of constraints sat-
isfaction. This presupposes that document functionality are made explicit
and requires to know the existing diversity of clients when the documents are
first authored. Indeed, this simple manner to achieve services negotiation®can
be used in systems where users diversity and the documents volume are very
limited. After all, authored once services, without an explicit functionality
definition is the most deployed solution in the Internet today. Multi-authoring
puts a heavy burden on document authors and is to avoid when possible.
The negotiation process requires mainly three elements:

1. A complete description of the server content (document profiling).

2. A complete description of the meta data of the client: the hardware
platform, the system software and applications used by the user agent
(user profiling).

3. The negotiation protocol, or the set of rules which must be followed
in content adaptation to satisfy user constraints. To satisfy the user
requests, negotiation rules apply particular mechanisms to adapt or/and
to select the appropriate document version.

4 The negotiation strategy

The role of the negotiation is to make user agents and servers agree on the
final service following a client request. We think that developing an inde-
pendent layer, responsible for achieving negotiation rules, is a better solution
than incorporating it into a particular application. This allows a transparent
content delivery to the user agent and common negotiation layer for different
players on the same client (eg. an HTML browser). In this section we de-
scribe the negotiation strategy. Solutions and descriptions may change from a
particular environment to another, this is why we try to give a global strategy
that ties generalities and details at the same time.

¢in fact, we haven’t here a negotiation with the proper meaning of the term.

4.1 Basic steps preceding invocation of the negotiation process

The negotiation strategy requires achieving some steps before its invoca-
tion. The concepts that we have discussed serve as tools to launch prop-
erly the negotiation process. We define the global architecture as a tuple
S=(UA_P,T,D_P) where:

e UA_P is the user agent set of profiles (we suppose that we have one user
agent, if there are more, other sets must be created)

e T is the set of the adaptation methods (transformations) used by the
server: T outputs as a result the D_P component.

e D_P is the set of document profiles existing on the server: i.e. the descrip-
tion of content documents in term of supported modules or functionality.
According to the negotiation strategy, this set can be fixed or variable
over time.

A transformation method ’t’ that exists in the server side can be defined
by its output document profiles when it is applied. T can be implemented
using XSLT processors plus style sheets collection. The formula ’t(x)=y’
means: after applying the 't’ transformation on the content x, we obtain as a
result a document that have 'y’ as its document profile.

Our negotiation strategy defines the rules to apply when some steps are
achieved. The main steps are:

e Preparing style sheets that can be used, this depends on the particular

characteristics of the considered multimedia system, i.e. handled docu-
ments, network constraint, user preferences, etc.

e Ensuring an XSLT transformation processor.

e Preparing profiles of the content server potentially requested by the dif-
ferent clients.

e Preparing user agents sets of profiles.

As introduced earlier, profiles are described using CC/PP and RDF and
the SMIL modularization model.

4.2 Kinds of negotiation strategies

According to the invocation of the adaptation process, we can distinguish two
kinds of negotiation?:

1/ On-demand negotiation: In this kind, the adaptation process is in-
voked upon the reception of the user agent request. Results of the adaptation
are directly transmitted to the user agent. In this case, document profiles set
existing on the server side doesn’t change, formally we can say that D_P is
stable.

2/ Cached negotiation: Unlike the first kind, cached negotiation uses
already produced adapted documents versions. This means that on the re-
ception of a user agent request, the server doesn’t invoke an adaptation on
the fly. It looks first for a stored version (including the original version) of
the demanded documenty. If the suitable version doesn’t exist, the server
invokes the adaptation process, using the best transformation. The adapted
document is then cached for future uses.

A document version can be identified by the tuple <Document Identifier,
Document Profile Identifier>, where the Document Identifier denotes” the
original version of the document. Document Profile Identifier denotes the
set of document modules in term of atomic supported functionality. Note
that the received value of Document Profile Identifier can be the same for
different clients, which means simply that these clients are intended to use
the document in the same context. Moreover, the Document Profile Identifier
value can be the same for different documents.

Cached negotiation is preferable if the use of a same document is frequent.
However if the client context changes frequently on-demand negotiation will
be more suitable. Mixed strategies can be adopted according to: user requests
trace and frequency, the client context changes, etc. Other techniques can be
used, such as: cache techniques, timing out for saved profiles, counters, etc.

4.8 The proposed approach

The key idea for ensuring an efficient negotiation strategy lies in making the
best effort to:

fthis classification is made on the basis of adaptation initialisation and server behavior,
and not on the basis of context changes.

9profiles search depend on the adopted approach in the profiles acquisition and distribution,
this constitutes an other aspect to be studied.

husing a value, a pointer, etc.

1. Find the appropriate content (a document or an existing document ver-
sion if it exists); or

2. The transformation method permitting to create such content.

The served content must satisfy the user agent preferences and take into
account the complete set of constrains presented in the global environment.
Making a best effort means identifying the process allowing to produce an
optimal content, even if the selected content can not be provided after applying
another negotiation strategy.

At the time of this writing, it was difficult to compare our solution with
other negotiation strategies as we did not find any in the literature. * shows
how CC/PP and RDF can be used to guarantee powerful descriptions nec-
essary for the content negotiation, however no negotiation rules are detailed.
This notion consists of applying the translation of a profile into another. When
this is achievable, we can translate either of the client or server profiles to the
other, or both to a common format. However ® gives just general descriptions
and no specific methods to achieve such translations are discussed.

We try to give in the following part, a new method of negotiation that can
be used in a heterogeneous multimedia system. We propose a set of rules to
be applied after achieving the steps introduced in section 5.1. Our strategy is
based on the following idea:

”The negotiation strategy must provide at the end step, a service which doesn’t
support more than the atomic functionality set supported by the client, as it
is described in its profile”.

To understand this simple -but very important- principle, we consider the
following example. Suppose that the client supports {X,Y,Z} set of atomic
functionality. We suppose that in the server side, existing documents have
{Y}, {X,Y} and {X,Y,Z,T} document profiles. It’s clear that the use of
the {X,Y,Z,T} profile can cause errors, because the "I’ functionality is not
supported by the client. Moreover, the use of {Y} profile isn’t preferable
because another profile, which covers larger supported functionality, exists.
The best negotiation strategy will output as a result the document having the
profile: {X,Y}. The problem is how to make profiles selections automatic, i.e.
achieved by a server process, thought that in some cases we haven’t all the
available possible profiles. Indeed some profiles may exist only after applying
transformation methods supported by the server (the T set).

Before we start describing the global negotiation strategy, we give briefly
a description of the fields used in the request formats. We don’t provide here
the details of the requests structure (which can be done nicely by description

tools like XML/RDF based mechanisms), we just list the important fields
related to the negotiation task.
We have four kind of requests: client request, client reply, server request and
server reply
We propose that requests must include, at least, the following fields:
Client request:
<Client Identifier, Server Identifier, Document Identifier, User Agent
Supported Functionality, User Agent Preferred Functionality>
Client reply:
<Client Identifier, Server Identifier, Document Identifier, Selected Profile>
Server Request:
<Client Identifier, Server Identifier, Document Identifier, Profiles Set>
Server reply:
<Client Identifier, Server Identifier, Document>

The User Agent Preferred Functionality describe the user preferences to
apply on the requested document. The content of the field may be different
than the User Agent Supported Functionality field. For instance, a client
browser may support AVI and GIF animations (User Agent Supported Func-
tionality), but prefers to receive a GIF animation format (User Agent Pre-
ferred Functionality). The main difference between the two fields is that we
can permit to deliver a service supporting a functionality included in the User
Agent Supported set but not preferred by the user. The opposite is, of course,
impossible to achieve. For example: Consider a client that can run under two
different software platforms P1 et P2 using the same browser B. The browser
supports M1, M2 and M3 under P1 but only M2 and M3 under P2. User
Agent Preferred Functionality = M1, M3. If the client runs under P1, a ser-
vice supporting M2 can be delivered, even thought that M2 is not preferred. If
the platform used is P2, a service supporting M1 must not be delivered, even
thought the client prefers it. Another solution can consist in sending only the
User Agent Supported Functionality set to the server. This solution imposes
more restrictions to the negotiation strategy on the client side, moreover the
User Agent Preferred Functionality set can be used to define a priority order
between a subset of the client preferred and supported functionality.

5 The negotiation protocol

For the purposes of the proposed solution, the following abbreviations are
used:
CI Client Identifier.

SI Server Identifier.

DI Document Identifier.

PSS Profiles Set, used to declare and to find the supported
document versions.

CC_P Client Constraints Profiles, an additional set of constraints,

that allow the client to select when many choices are proposed
by the content server, this set of profiles may be empty and
updated any time.

SC_P Server Constraints Profiles, the same role of CC_P but in
the server side. It concerns services delivery.

SP Selected Profile, the selected profile by the client.

D Document, denotes the final adapted document provided by
the server.

US User agent Supported functionality, or modules.

UP User agent Preferred functionality.

USP User agent Supported and Preferred functionality.

TS Set of profiles that can exist after applying transformation

methods of the T set.

a) The TL evaluation

The negotiation strategy that we propose in this document uses a new notion
that we call Tailored Levels priorities evaluation, or in short TL evaluation.
The necessity of ensuring such mechanism lies in the fact that the negotiation
strategies must execute several steps of profile selections. The criteria of these
selections are not trivial and, sometimes, not predefined efficiently, which can
not be described with a simple formula or a short selective code instructions.

Our approach consists to tailor a level of priority that guides selections
in a predefined collection of sets (set of profiles, in our context). The priority
levels are tailored and processed with the same method, which allows the reuse
of the same mechanism in different use cases. In the proposed solution, we
distinguish two use cases of the TL evaluation principle. The module, which
is responsible to achieve selections, is called: a TL evaluator.

A TL evaluator admits as input: a set of elements I, and a collection of
sets CS. It outputs a set of elements O, where the elements are ordered in a
predefined priority. An order must be predefined between the CS elements
(which are sets). To well understand how the TL mechanism works, we discuss
the different use cases existing in our negotiation strategy.

Use case 1: General form: O = TL_evaluator(I,CS);
Example: P_S= TL_evaluator(US,D_P);

Here, the input set of elements (I), is represented by the US set, (i.e.
the user agent set which contains supported atomic modules). The target
collection of sets (CS) -in where we must find the best set, or collection of
sets, according to a predefined criteria- is represented by D_P, i.e. the set
of document profiles existing in the server side. The output set O, here P_S,
will contain the wanted document profiles ordered by priority. The predefined
priority of selecting is represented as follows:

- +
A A

Profiles which have the same set of

supported modules

Profiles which have less than the Number of requiered
requiered modules, and doesn’t include but non existing
non-supported modules modules

The priority order of profile
selections

Profiles which have at least a non—-supported | Number of non-supporte

Intern order according to the
value of the considered parameter

module modules
Server existing document Parameter considered in
profiles the intern order

Figure 5: The predefined priority of selecting

Profiles are ordered according to the global priority order into three collec-
tions. Inside of each collection, profiles are ordered according to another
considered parameter (figure 5)). In our solution, TL evaluator must not,
in this use case, include profiles belonging to the low level of priority. This
means that profiles, which have at least a non-supported module according to
US, are not included in P_S. Note that the evaluation may return an empty
set.

Consider the following example:

Let US = {Y,T,U} and

D_P = {{,W} {TH{X,Y,Z,T,UL{Y,U}{X,U,T} {T,U,Y},{Y,T.X} {T,Y}}.
According to the predefined priority order, profiles are ordered as follow:
First collection (low priority): {X,W}: intern order parameter = 2,
{X,Y,Z,T,U}: intern order parameter = 2, {X,U,T}: intern order parame-
ter = 1, {Y,T,X}: intern order parameter = 1.

Second collection (medium priority): {T}: intern order parameter = 2, {Y,U}:
intern order parameter = 1, {T,Y}: intern order parameter =1.

Third collection (high priority): {T,U,Y}.

After applying TL evaluator on the server document profiles, P_S will contain
the following elements in this increasing order:
PS={{T,U,Y}{Y,U}{T,Y},{T}}, which respond correctly to the negotia-
tion principle.

This use case is the same (the same principle and the same predefined global
and intern order of priority), as: P_S= TL_evaluator(US,T _set). Here T set
represents all the profiles that can be obtained after applying T methods.

Use case 2: General form: O = TL_evaluator(CS,I);
Example: P_S = TL_evaluator(P_S,USP);

In this use case, the TL evaluator admits as input a collection of sets CS,
in the example P_S, and a set of elements, in the example USP (the user
agent supported and preferred modules profile). Here, the principle is very
simple, it consists in ordering CS according to the elements existing in 1. In
the example, profiles found in P_S, are ordered according to user preferred
and supported modules. In this use case, the priority order can be given in
two manners:

1. If the preferences, UP, represent constraints intended to be only added to
the constraints set included in US. The priority parameter equal to the
number of preferred modules, and the consideration order is increasing.

2. If the preferences describe all, and only all the preferred modules, the
priority is considered using two parameters: a) The number of preferred
modules with an increasing order. b) The number of the non-preferred
modules, but with the decreasing order. The final way to mix these two
parameters is left to the users. The simplest formula will be the first
parameter minus the second.

Consider the previous example discussed in the first use case.

If USP = {Y,T} for example, the profiles of P_S will be ordered -after
applying

P_S = TL_evaluator(P_S,USP)- as follows:

e Manner 1:

{T,U,Y} : priority parameter = 2

{T,Y} : priority parameter = 2
{Y,U} : priority parameter = 1
{T} : priority parameter =1

and thus P_S={{T,U,Y},{T,Y},{Y,UL{T}}.

e Manner 2: (priority parameter = number of module preferred - number
of module non-preferred)

{T,Y} : priority parameter = 2-0 =2
{T,U,Y} : priority parameter = 2-1 =1
{Y,U} : priority parameter = 1-1 =0
{T} : priority parameter = 1-0=1

and thus P_S = {{T,Y},{T,U,Y},{T}{Y,U}}.

This use case is the same (the same principle and the same predefined
global and intern order of priority), as : P_S = TL_evaluator(P_S,SC_P)
and TL_evaluator(P_S,CC_P). SC_P and CC_P represent sets of addi-
tional constraints made by the server or the client to guide more the
selecting process. This additional selecting is optional and can be omit-
ted. The priority parameter is calculated according the satisfaction of
the presented constraint by each module.

b) Negotiation protocol
1- Client side: Here is the client code part: ...
User Agent Supported Functionalities
= Determine_Actual User_Agent_Supported _Functionality();
//Returns an identifier value, an CC/PP-RDF structure
//pointer, or other.
User Agent Preferred Functionality
= Determine_Actual_User_Agent_PreferreD_Functionality();
Server Identifier
= Determine Document_Server(Document Identifier);
//Determine the wanted document server or proxy.
Client_Request
= (<Client Identifier, Server Identifier, Document Identifier,
User Agent, Supported Functionality, User Agent
Preferred Functionality>);
send (Client_Request) to Server Identifier;

repeat forever {
when receive Server_Request form Server Identifier do

(CLSI,DLP_S) = Server_Request;

SP = TL_evaluator(P_S,CC_P); {use case 2}
Send (CISI,DI,SP) to SI;

} //end when

when receive Server_Reply form Server Identifier do

(CLSIL,D) = Server_Request;
if D # 0 then use D;
}//end when

}//end repeat

2- Server side: The server code part is given as follows:

repeat forever {
when receive Client_Request form Client Identifier do

(CLSI,DI,US,UP)= Client_Request;

USP = UP-(UP-US);
// Determine the supported AND preferred modules

P_S = TL_evaluator(US,D_P); {use case 1}

P_S=P.S U TL_evaluator(US,T_set); {use case I}

// Search for possible profiles, after applying existing

// transformations methods that can satisfy the user agent

// profile (US).

if (P_S # () then
P_S = TL_evaluator(P_S,USP); {use case 2}
// Apply further TL selections on the base of clients preferences
P_S = TL_evaluator(P_S,SC_P); {use case 2}
// Apply further Server Constraints (SC_P). For example the
// server can detect that the network bandwidth become very
// low, and consequently we mustn’t provide video services.
Server Request = <CI,SI,DI,P_S>;
send (Server_Request) to CI

else
Server Reply = <CI,SI(>;
// Existing profiles doesn’t reply to the demanded profile.
send(Server _Reply)to CI;

fi;

}//end when

when receive Client_Reply form Client Identifier do

(CIL,SI,DI,SP)=Client_Request;
if SP exists in D_P then
send (CI,SL,Document(SP)) to CI

// send the document having as profile SP

else
t = find_transformation(SP);
D = t(DI); //apply corresponding transformation;
D.P =D.P USP; //save document profile;
save(D);//save document version;
send (CLSID) to CI; //send the adapted document
ﬁ.

}/ /’ end when
}//end repeat

The algorithm that we propose here is suited to servers and clients person-
alizing. It doesn’t impose any restrictions on the executing contexts. For
example, the client can define freely its TL constraints evaluation, its per-
sonal preferences and additional constraints that can be updated any time
without changing the basic descriptions. Network connectivity parameters
such as bandwidth that may affect the services delivery can be included in
the server constraint profile SC_P.

6 Conclusion

Nowadays, accessing to the Web content through a variety of devices is in-
creasing rapidly. Powerful methods of transformation, adaptation and profiles
negotiation strategies to deliver a customized service at the end user level,
must be designed in an efficient manner.

In this paper, we have given the main steps and tools to use in the design
of a negotiation-based multimedia service for heterogeneous environments.
We have seen that, thanks to the related transformation technologies, XML
content models are a key issue for authoring and storing adaptable multimedia
documents on the servers. CC/PP and RDF mechanisms play a primary role
in the description of client preferences and capabilities, which are used in
the negotiation phase. SMIL modular approach provides necessary flexibility
for both final presentations in different contexts, and the expression of the
supported functionality either on the client or on the server. We have proposed
a method of negotiation, based on profiling and document selecting. We
have described a related protocol and shown how that strategy can respond
efficiently to customized content delivery services to the end users.

Several open issues need further exploration. Among the future work that
we intend to achieve is to build a detailed specification of how to use an end
to end solution based on this approach: this includes an authoring model and

a generic transformation framework.

References

1.

2.

10.

11.

12.

13

M. Balabanovic, An Adaptive Web Page Recommendation Service, Pro-
ceeding of first International Conference en Autonomous Agents, 1997.
T. Berners-Lee, R. Fielding, L. Masinter, RFC 2396: Uniform Re-
source Identifiers (URI): Generic Syntaz, IETF Request for Comments:
ftp:/ /ftp.isi.edu/in-notes /rfc2396.txt

D. C. A. Bulterman, User-Centered Abstractions for Adaptive Hyperme-
dia Presentations, CWI (Centrum voor Wiskunde en Informatica), NL-
1090 GB Amesterdam, The Netherlands.

W3C, Composite Capabilities/Preference Profiles (CC/PP): A user side
framework for content negotiation, W3C Note, http://www.w3.org.
W3C,Composite Capabilities/Preference Profiles: Requirement and Ar-
chitecture , W3C Working Draft, http://www.w3.org.

M. Chen, D.D. Kandlur, and P.S. Yu, Support for Fully Interactive Play-
out in a Disk-array-based Video Server, In Proc. ACM Multimedia’94,
San Fransisco, USA, October 1994.

H. Chen, A. Krishnamuthy, T.D.C. Little, and D. Venkatesch, A Scalable
Video-on-Demand Service for the Provision of VCR-like Functions, In
Proc. ICMCS’95, Washington DC, USA, May 1995.

3GPP, Technical Specification Group Services and System Aspects, Trans-
parent end-to-end PSS, protocols and codecs (Release 4), 3GPP TS 26.234
v1.5.1, March 2001.

Graham Klyne, Franklin Reynolds, Chris Woodrow, and Hidetaka Ohto,
Composite Capability/Preference Profiles (CC/PP): Structure and Vo-
cabularies, http:/ /www.w3.org/TR/CCPP-struct-vocab/, W3C Working
Draft, 15 March 2001.

S. Hollfelder, A. Kraiss, and T.C. Rakow, A Client-Controlled Adapta-
tion Framework for Multimedia Database Systems, In R. Steinmetz and
L.C. Wolf, editors, Proc. IDMS’97, pp 397-409, Darmstadt, Germany,
September 10-12, Springer 1997.

N. Layaida, Madeus: Systéme d’édition et de présentation de documents
structurés multimédia, PhD thesis, Joseph Fourier University - Grenoble
I, June 1997, France.

Tayeb Lemlouma, Routing in Mobile Ad Hoc networks, Master Thesis,
Computer Science Institute, USTHB University, Algiers, Algeria, Octo-
ber 2000.

F. Moser, A. Kraib, and W. Klas, L/MRP: A Buffer Management Strat-

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

egy for Interactive Continuous Data Flows in a Multimedia DBMS, In
Proc. VLDB 1995, USA, 1995, Morgan Kaufmann.

Ora Lassila, Ralph Swick, Resource Description Framework
(RDF) Model and Syntax Specification, W3C Recommendation:
http://www.w3.org/ TR /1999 /REC-rdf-syntax.

S. V. Raghavan, Satish K. Tripathi, Networked Multimedia Systems:
Concepts, architecture and design, Prentice-Hall, 07458 New Jersey,1998.
L. Rutledge, L. Hardman and J. V. Ossenbruggen, The use of SMIL:
Multimedia Research Currently Applied on a Global Scale, CWI (Cen-
trum voor Wiskunde en Informatica), NL-1090 GB Amesterdam, The
Netherlands.

G. Salton and M. J. McGill, An Introduction to Modern Information
Retrieval, McGraw-Hill 1983.

Kenichi Kubota, Aaron Cohen, SMIL Basic Language Profile, 22 June
2000,

http:/ /www.w3.org/TR,/2000/WD-smil-boston-20000622/smil-basic-
profile.html.

N. Layaida, J. V. Ossenburggen, SMIL 2.0 Language Profile, 01 March
2001,

http://www.w3.org/ TR /smil20/smil20-profile.html.

W3C, Synchronized Multimedia Integration Language (SMIL 2.0)
Specification, W3C Candidate Recommendation, 12 March 2001,
http://www.w3.0org/AudioVideo, Group/2001/CR-smil20-20010312/.
Susanne Boll, Wolfgang Klas and Jochen Wandel, A Cross-Media Adap-
tation Strategy for Multimedia Presentations, DBIS, Computer Science
Department, University of Ulm, Germany, ACM 1999.

W3C HTML working group, XHTML: The FEztensible HyperText
Markup Language, A Reformulation of HTML 4 in XML 1.0,
http://www.w3.org/ TR /xhtml/

W3C, Extensible Markup Language (XML) 1.0, W8C Recommendation,
10 February 1998, http://www.w3.org/TR /1998 /REC-xml-19980210.
W3C Working Group, http://www.w3.org/Style/XSL.

