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1 INTRODUCTION

The recent advances in multimedia systems, together with the advent of high speed networks, paved the
way to a new generation of applications. In particular, the authoring environments have found in multimedia
the means of increasing the richness of information contained in electronic documents. With the evolution of
new computer systems that can handle multimedia information, time-based data can be integrated in electronic
documents taking into account their temporal dimension. In such documents, temporal dependencies between
the different media objects define a temporal structure within the document. This structure is the basic support
for the representation of dependencies between data such as audio, video and virtual images. Furthermore, it
allows the scheduling of presentation actions during the document presentation.

The presentation of multimedia documents is dynamic and the positioning of objects in time together with
their duration have to be specified. To achieve this operation efficiently, a high level temporal representation is
needed which allows the author to specify all the temporal dependencies between multimedia objects.

In this paper, we propose an interval-based temporal model and constraints which provide a basis for the
management of the consistency of multimedia documents. We propose an efficient algorithm allowing the detection
of a wide range of inconsistencies. The emphasis in the design of these algorithms is put on the handling of both
the flexibility of temporal specifications and the indeterministic behaviour of some media objects. Furthermore,
we use the logical organization of the document in nested entities to enhance the performance of the methods
used for detecting inconsistencies. The aim of our approach is to fulfill the following requirements :

e Structured modelling: The document content is defined by a hierarchy of nested components where
leaves are basic media objects and nodes composite objects.

e Incremental manipulation of the document: This means that the author adds one constraint at a
time, retaining all previously introduced relations as the current state of the document.

e Consistency checking: For every specification introduced by the author, the system checks if there exists
a solution to the set of constraints, otherwise an error is reported to the author.

¢ Integration of the different dimensions of multimedia documents: In our model, we focus on four
dimensions of the document (logical, temporal, spatial and hyperlink). These dimensions are closely related



and have to be considered simultaneously as they may interfere. In this paper, we will focus on the temporal
and logical dimensions of the document but we will describe briefly how this fits with the spatial one.

¢ Automatic production of temporal layout: The author specifies relations using a high-level language
to describe the document temporal layout, and does not have to explicitly set the low-level synchronization
dates.

In section 2, we present our model of document composition showing the logical, spatial, and temporal
dimensions. In section 3, we describe how we can create and manipulate the internal representation of the
multimedia document in the form of constraint networks. In section 4, a consistency checking algorithm is
proposed, followed by a discussion. Finally, in section 5, we conclude our work and give some future directions.

2 DOCUMENT COMPOSITION MODEL

A temporal model is a set of abstractions that allows users to specify temporal constraints in multimedia
documents. This model consists of a given representation of time (a time model), a temporal expression that
defines a temporal language, and some capabilities or mechanisms for automatically processing the temporal
information contained in multimedia documents.

The basic parameter of a temporal relation is an interval, which is an abstraction of a media object. This
interval has a non-zero duration and is described in the time space by two instants or end points (begin, end).
This duration can be an intrinsic information of the media object or dependent on some constraints in the context
of a given document. In our model, we distinguish between three kinds or classes of basic media objects regarding
their temporal behaviour!? :

1. Discrete media objects which do not have a notion of time. The presentation of these objects is not
bound to temporal flow constraints. Examples are text, still pictures and graphics.

2. Continuous media objects which have a notion of time. The presentation of these media objects is bound
to a certain playback rate. Therefore, their duration can be known at the stage of authoring. Examples are
video and audio.

3. Indeterministic media objects (discrete or continuous) which have an indeterministic presentation du-
ration. The presentation of this kind of media objects will lead to several durations when presented several
times. Examples are user interactions, objects obtained as a result of the executions of programs like
database queries (discrete) or computed synthetic images produced during the presentation (continuous).

A multimedia document is a mixture of sub-components which are related by several types of relationships.
These various natures of bindings confer to the document a multi-dimensional skeleton which reflects its spatial,
temporal, logical and semantical (hyperlinking) structure.

2.1 Logical Composition

In the context of a given document, objects are logically organized as a collection of nested entities (document
scenes). This organization of the document is achieved to construct pieces of information so that semantically
related elements build a new atomic entity with higher granularity. We call this operation the logical composition
of the document.
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Figure 1: The logical Structure

In our approach, a multimedia document is considered as an organized set of typed elements which are logically
related to each other. Typical elements of these documents are titles, paragraphs, tables, graphics, figures, 3D
animation, audio, video, etc. All these elements have various structural relationships: a movie contains a video,
some paragraphs and optionally background music; a scene follows another scene; a part of an image may refer
to a section item, etc. International standards like SGML® or HyTime® have extended this approach by defining
classes of documents or DTDs (Document Type Definitions). A DTD is a BNF-like grammar that describes the
document content and drives the authoring process through the user interface!2.'9 Several projects have used the
structuring scheme to automatically produce spatial layout in classical documents!3.”

We claim that similar work can be achieved for the temporal dimension. Usually, existing models do not make
a clear difference between the logical and the temporal dimensions since they use the temporal operators to build
logical clusters.

2.2 Spatial Composition

The spatial composition corresponds to the operation of laying out the multimedia objects on the media
channels (screen, audio channels, ..). In Thot,!® the layout presentation of multimedia elements is defined by the
size of their bounding boxes and their position on the screen. These presentation parameters are determined by
the help of some user defined generic rules and attributes defined for each class of documents (a DTD). These
generic rules use the information of the object types, the document structure and the temporal constraints to
define the spatial layout automatically. The organization of the document as a hierarchy is also used to propagate
the style attributes like text fonts, colors and sizes. For flexibility reasons, this mechanism is completed by specific
rules that have higher priority than the generic ones, for example, to introduce a different text font for a subset
of a section other than its default one.

Due to the time based nature of multimedia presentations, media objects appear and disappear on the different
channels at specific time instants. In our model, four events are of interest for the spatio-temporal information
processing, these are the allocation of a media channel for a given object, its start and end instants on this channel
according to temporal constraints and the deallocation of the channel. These events allow us to model various
situations of the presentation. For example, when playing a video on the screen, the end of the play of a video
object (i.e. end of its play time) can be disassociated from the instant corresponding to the action of freeing
the area that it occupies on the screen. Similarly, instants are defined for buttons where playtime and endtime
instants correspond to their enabling and disabling in the user interface.

The relation between the temporal and the spatial dimension of the document is defined as follows: Every
start or end time instant of a temporal object corresponds to a given set of spatial operations called spatial
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Figure 2: The set of temporal operators

events. These events are used to fire the mapping or unmapping of objects on the screen, and their start or stop at
specific moments of the presentation. The presentation layer of our authoring tool uses the logical and temporal
information to decide what actions are to be performed at each step of the presentation. For example, in Fig. 1
we have a composite object, called framel, whose all component objects are required to be mapped spatially on
the screen at the same instant, then each object will start at its right time according to the temporal constraints.
Similarly, another composite object, called frame2, is to make the same thing but after all the component objects
of framel deallocate their media channels.

2.3 Temporal Composition

Temporal composition is a language driven process that defines the temporal synchronization of multimedia
objects. Generally, temporal languages are based on a functional description so that encapsulation becomes
straightforward”.!! The drawbacks of these descriptions is that encapsulation is achieved at the cost of the
temporal language expressiveness, because the temporal representation of the document is restricted to a tree
structure.!! In contrast, other models use relational grammars for composition which permits a better temporal
expressiveness? but a consistency checking mechanism is required. Our model is based on the general relational
model of Allen® extended to take into account both the quantitative aspect of intervals and delays and the nesting
of logical parts of multimedia documents. We believe that this approach provides a better compromise between
the expressiveness of the temporal language and the efficiency of the consistency checking algorithms.

First, we distinguish between two types of temporal information: symbolic specifications and numerical con-
straints. Symbolic specifications are primitive relations introduced by Allen and possibly their disjunctions
permitted by the pointizable interval algebra.'* This restricted algebra can be translated into time point algebra
relations and the associated numerical constraint propagation methods can be achieved in a polynomial time. In
our temporal language, we restrict the set of operators to the non-disjunctive case called STP (Simple Temporal
Problems!'*®). This symbolic representation allows the user to set the temporal constraints of the document
through a high level interface.

From the author’s point of view, the temporal structure of a multimedia document is defined as a set of
temporal relations, as defined in Fig. 2. Some types of relations may be associated with a delay parameter t.
Each relation relates two objects which can be one of the following types:

e A basic media object (BMO) which consists of a basic media data like audio, video, graphics and text.
It corresponds to the leaves of the logical structure’s hierarchy.



e A composite object which represents an entity composed of a number of media objects (basic or com-
posite) having a certain semantic in itself (a type). It corresponds to the nodes of the logical structure’s
hierarchy.

A composite element is in fact an isolated part of the document which is spatially, temporally and logically
independent. Therefore, it is composed with the other objects only by its end points (the type for logical
composition, the bounding box for spatial composition and begin and end instants for temporal synchronization).
This property ensures the global consistency of the whole multimedia document, where consistent composite
objects ensure that they won’t be the source of any inconsistency (i.e. considered as basic media objects).

A basic media object is described by a set of attributes. These attributes reflect the temporal nature of the
object and are as follows :

Attributes of BMO = { Name, Type, { Temporal Attributes}, {Spatial Atiributes}}
Temporal Atiributes = { Temporal Type, Duration Range}

The attribute Name is a global identifier that allows access to objects at the storage level. The attribute
Type defines the type of the object according to the logical structure. The Temporal Attributes, with its two
components Temporal Type and Duration Range, describes the temporal behaviour of an object. The Temporal
Type attribute takes the values {Discrete, Continuous, Indeterministic}. The Duration Range attribute is the
allowable range of durations, finite or infinite, which an object can have at the presentation stage.

3 TEMPORAL CONSTRAINT NETWORKS

A temporal constraint network is an internal representation of the document which is extracted from the
symbolic temporal relations introduced by the author. This network is represented in the form of a Directed
Acyclic Graph (DAG) that is composed of a number of nodes. Each node in the network represents a time
instant at which one or more intervals can start or finish. Each arc represents a temporal interval between the
nodes at its start and end, showing a temporal constraint for a duration or a delay as defined in Fig. 2. We add
two abstract time-points BEGIN and END corresponding to the dates of the beginning and the end of a given
composite object. The playing of a multimedia document can be considered as a navigation in the constraint
network starting from its BEGIN node to the END one, passing by all the nodes in the network at the right
instants according to the temporal constraints and the logical structure. This representation of the document is
the basic data structure that we use to hold the numerical constraints of the entire document.

3.1 Controllability and Flexibility of Temporal Presentations

In the classification of multimedia objects introduced in Section 2, we distinguish between discrete, continuous
and indeterministic objects. At the abstract level, all these types of objects as well as the delays can be represented
as intervals with given durations. But when considering the mechanism of constraints propagation, one can notice
a fundamental difference between two types of intervals: free or contingent.

Definition 1: A free interval is an interval with a numerical constraint [1, u]; (where | < u, | and u are
positive values and u can have an infinite value) on its duration such that its value can be freely assigned to
any value in the range [l, u]. This kind of interval models the behaviour of continuous objects whose durations
can be chosen in a finite range according to allowable play-back rates or discrete objects whose durations can be
assigned to any value (the range, in this particular case, is infinite).



Definition 2: A contingent interval is an interval with a numerical constraint [l, u]. on its duration which is
a random value in the range [1, u]. This kind of intervals models the behaviour of indeterministic objects whose
values are random.

Following these two definitions, we can distinguish between two aspects of a temporal scenario : the flezibility
and the controllability. The flezibility measures the ability of a temporal scenario to be adjusted in order to meet
the consistency requirements. It can be achieved using the free delays and the properties of some multimedia
objects to be shrunk or stretched in a given range of durations. This range is generally chosen in such a way
that it preserves the intelligibility of these objects at the presentation time. As we will see in the next section,
flexzbility will also be used to tackle the indeterministic behaviour of contingent intervals and consequently it
extends the consistency checking methods. The controllability of a temporal scenario means the possibility to
re-adjust it in order to compensate, at run-time, for the behaviour of indeterministic objects.

3.2 Constraint Network Construction

Now, we will describe a method for creating the constraint network from a list of user defined temporal
constraints. We follow the assumptions: (1) no links are created from(to) the BEGIN (END) node unless a non
empty list of temporal constraints exists; (2) no interval is represented in the network unless it appears explicitly
in the list of temporal constraints. The first step, is creating the BEGIN and END nodes but unlinked. Next
step, for each temporal constraint, we create, if not created, the nodes for the intervals appearing in it. For each
interval we create two nodes, start and end nodes, with a link from the start node to the end one. Then, the
nodes of different intervals are related to each other according to the type of the constraint. We either add delay
links between the nodes, as in the case of the ”"before” constraint, or fuse two nodes into one node, as in the
case of the ”starts” constraint; in this case start nodes are fused. Note that each added delay link, must have a
corresponding delay interval in the intervals list. In the case of fusing nodes, outgoing and incoming edges of the
two fused nodes must appear in the resulting fused node, and redundant edges have to be deleted. Finally, delay
links are added between the BEGIN (END) node and the nodes having no incoming (outgoing) edges.

First, we introduce the notion of temporal chains. A temporal chain [e1, e2, .., €,] is a sequence of contiguous
edges where each edge e; , 1 < j < nis only related to one successor and one predecessor so that begin (e;) =
end (ej_1) and end (e;) = begin ( ej41), every single interval being free or contingent.

Now, we will describe a method to identify the chains found in a constraint network. Let N be the list of nodes
constituting the network. Let T be the list of nodes in ¥ which are considered as starting nodes for chains. Any
node i in T must satisfy the following condition: "node i is not the END node, and either node i is the BEGIN
node or the number of its either outgoing or incoming edges is greater than one”. Each node in T is a start node
for a number of chains equals to the number of its outgoing edges. Then, each subsequent node j in a chain C
is considered as an intermediate node of chain C, if it satisfies the following condition: "node j is not the END
node, and the number of both outgoing and incoming edges of j are equal to one”. If node j doesn’t satisfy the
latter condition, then it is the end node of this chain C and we will investigate other chains and so on.

3.3 Constraint Network Manipulation

By the manipulation of a constraint network we mean the modifications of its chains as a result of any
modification in the list of temporal constraints or intervals, such as appending or removing a temporal constraint
or an interval.



3.3.1 Appending Constraints

Appending a new constraint leads to: (1) the explicit appearance of its intervals in the network, and (2) the
addition of new delay links and/or fusion of nodes in one node. This leads to the creation of new chains and/or
the modification of previously existing ones. For the newly created chains, there is no problem to identify them
as previously mentioned. The question now is how are we going to identify the modifications in the previously
existing chains. The answer is as follows. It can be easily shown that we don’t need to modify any old chain C
unless it includes an intermediate node i whose number of either incoming or outgoing edges has been changed
due to the newly added constraint. If this node i exists then chain € will be divided into two chains C1 and C2.
As for chain C1, it has the same start node as chain C and its end node is node i, and for chain C2, its start node
is node i and it has the same end node as chain C.

3.3.2 Removing Constraints

The removal of a constraint leads to (1) the deletion of some links in the network and/or the splitting of a node
into two separate nodes, and (2)perhaps, the removal of intervals from the network. The method of removing a
constraint depends on its type. A constraint is removed by either the removal of a delay link or the unfusion of
a node into two nodes.

The removal of a delay link is needed in case of removing temporal constraints of types: before, during,
overlaps, and their reverse types. Suppose that we need to remove the delay link <i, j> which starts at node 1
and goes to node j. Let the chain C be that which contains the link <i,j>. Apply the following steps:

1. Delete link <i,j> and remove chain C from chain list.

2. If the number of outgoing edges of i becomes zero, then add a delay link <i,END>, and create a new chain
C1, where it has the same sequence of nodes as chain C from the start node of C, until node i, then C1 ends
with the node END.

3. If the number of incoming edges of j becomes zero, then add a delay link <BEGIN, j>, and create a new
chain €2, where it starts by node BEGIN then it has the same sequence of nodes as chain C from node j until
the end node of C where C2 ends.

4. If the number of both incoming and outgoing edges of 1 becomes equal to one, and i was both the end node
of chain CH1 and the start node of chain CH2, then add new chain CH which is the result of concatenation of
chains CH1 and CH2.

Repeat step (4) for node j.

Ot

Unfusing (or splitting) a previously fused node n into its two original nodes i and j, is needed in case of
removing temporal constraints having the following types of operators: equals, meets, starts, finishes, and their
reverse operators. In the unfusing operation, one must ensure that the resulting nodes i and j have the correct
subset of both incoming and outgoing edges of the node n. To handle the modification of chains, we add a dummy
delay link <i,j> with zero duration, then remove it using the above method of removing of a delay link.

Finally, an interval, of the removed constraint, has to be removed from the network only when (1) its nodes
are not fused with other nodes, and (2) it is linked only to BEGIN and END nodes.
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Figure 3: Temporal inconsistency examples

3.3.3 Appending and Removing Intervals

A newly appended interval will not appear in the network until it appears explicitly in the temporal constraints
list. For the removal of an interval I, the above method of removing constraints can be applied for every constraint
in which interval I appears.

4 DOCUMENT CONSISTENCY

Modifying a document by incremental specification of new objects and relations, introduces additional tem-
poral constraints. This operation may lead to a temporal inconsistency because temporal parameters of objects
(duration, begin-end dates) must satisfy invariants related to the time progression. In the temporal DAG, this
invariant ensures the causal ordering of presentation events. For example, given three objects a, b and ¢ as in
(Fig. 3-a), then specifying that a meets b and b meets ¢ makes the specification ¢ overlaps a inconsistent.
This is called a qualitative inconsistency because it results from the nature of the relations independently of the
durations of objects they link. However, qualitative consistent specifications may be quantitatively inconsistent
with respect to objects’ durations. For example in (Fig. 3-b), specifying that a meets b and a starts ¢ makes
the qualitative consistent specification ¢ overlaps b inconsistent, if durations of a and ¢ are 20 and 30 seconds,
respectively. Finally, in (Fig. 3-c¢) which is the same as the previous example but interval ¢ is an indeterministic
object whose duration is bounded in the interval [20, 40], we have an inconsistency due to indeterminism, since
the end of ¢ may occur at any time, therefore this specification may possibly fail.

A considerable range of the existing interval based temporal models of multimedia documents are incomplete
in the sense that they don’t handle the indeterministic behaviour of objects. Therefore, they don’t make any
difference in the way of handling free and contingent intervals. Consequently, temporal information such as user

interactions, latency, and network delays become difficult to be represented and managed.

In the following section, we will expose a way to address both the problem of maintaining the temporal con-
sistency in presence of indeterministic media objects and the efficiency of the algorithm achieving this operation.

4.1 Consistency Checking Algorithm

Given the DAG representation extracted from the symbolic graph, we can make the following statements :

e Circuits are not allowed (Acyclic Graph) since ”instants coming from the past can not be equal to instants
in the future” and vice versa.
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Figure 4: Example of scenario adjustment

e Cycles are always composed of two parallel chains (DAG property) whose total durations must be com-
patible. The temporal compatibility of two temporal chains means that the intersection of the range of
allowable durations of the two chains is not empty. This property ensures that the temporal coincidence of
the end points of the two paths can be guaranteed at run-time.

These two statements distinguish the sources of the three types of inconsistencies introduced earlier. First,
we make a fundamental assumption about the observance of the scenario at run-time. Since the specification
stage of a temporal scenario is somehow a prediction of how events will occur over time, we assume that the
only observable states of the temporal scenario at run-time are the begin-end points of the intervals. The main
idea behind this assumption is to provide by static methods the means for deciding if a given scenario can be
dynamically adjusted or not (dynamic resynchronization of the presentation).

Our algorithm uses these observable states of the presentation in two stages: first, to establish the effective
durations of unpredictable intervals, then to compensate these random delays by a duration adjustment (change
of presentation speed) of the forthcoming free intervals, called provision intervals. The amount of flexibility
provision taken from a free interval to compensate for one random delay must be reserved as it can’t be used
to compensate for another random delay. Furthermore, the value of random delays must be observed before the
start of continuous provision intervals because of our assumption, unlike delay and discrete provision intervals
whose end can be delayed dynamically without affecting the presentation’s quality.

Before getting into the description of the algorithm, let us first show how this way of checking the temporal
consistency of two chains works through simple examples.

In the first example, the author specifies an equal relation between an indeterministic object A (a button) and
a discrete object B (a tezt). This is represented in the DAG by two parallel edges, one for each interval, with one
common fused start node as well as one common fused end node. It is obvious that this scenario is consistent
since the end of the object B (represented by a free interval [0, co];) can be freely delayed until the occurrence
of the end instant of object A (represented by a contingent interval [1,u].), whenever it happens.

In the second example, we take a part of a scenario where we have two chains that are constrained to be of
equal durations. In order to satisfy this constraint we have to ensure that begin and end points of these chains
start and finish at the same time. The object A is an indeterministic object whose end point can occur at any
time in the range represented by a dashed line (see Fig. 4 ). The object B is a continuous object with an amount
of flexibility represented by a thin line in the figure. Here again, it is easy to see that if the amount of flexibility
of the object B is higher than the unpredictable range of the object A (condition 1), and if the the observable
point precedes the start point of the object B (condition 2), then the temporal coincidence of the end instant of
the objects C and B can be achieved. Therefore this part of the scenario is consistent since it is controllable.



One can notice that a given chain, if considered through its end points, defines a new interval, and therefore
its total duration can be reduced into two parts, one part representing the total duration of free intervals and
another part for contingent ones as follows :

Let C be a chain containing the sequence Aj, As, ..., A, of intervals, each interval A has a duration range
[L, U] and can be free or contingent. Note that a given chain can be considered as a free interval if it contains
only free intervals, and contingent if it contains at least one contingent interval. The total duration of a chain
and some of its parameters are defined as follows (@ is the composite operator):

Duration Range(C) = Free Range(C) ¢ Contingent Range(C)
Free Range(C) = [EFree(C) L;, EFT&E(C) U;1; = [CLF, CUFl;
Continget Range(C) = [Ecw(c) L;, Ecw(c) U;1. = [CLc, cucl,
Flexibility = CUF - CLF , Indeterminism = CUC - CLC

Where Free(C) and Ctg(C) are the set of free and continget intervals, respectively, of chain C. The consis-
tency checking algorithm which is based on the previous assumption and statements works according to these
four stages. For each new specification:

Stage 1 (qualitative consistency): If the new relation introduces a circuit in the DAG then this spec-
ification leads to a qualitative inconsistency (statement 1). It is therefore rejected. This can be detected by
maintaining a topological sort of the constraint network.

Stage 2 (forming the chains): If it introduces new cycles, we build the corresponding temporal chains
and add them to the existing ones to form the new cycles (if any). Each duration range of these chains is then
computed as described earlier. As a result, the numerical constraints of the whole document are, after this stage,
represented by this set of chains through their free and contingent duration ranges. The temporal consistency of
the scenario is then reduced to the problem of finding a combination of values that ensures for every cycle of the
graph a temporal coincidence of its two end points. Since we proceed by incremental steps, this operation is first
achieved for the new chains then for the other depending chains (progressive propagation of the constraints).

Stage 3 (testing the quantitative consistency): The newly introduced chains are then checked one by
one against the existing ones as follows: As we have four possible combinations of chains depending on their
behaviour (free/contingent), a first pass of the algorithm is used to solve some trivial cases by checking some
necessary conditions on the durations ranges.

For every cycle composed of two chains C1 and C2:

Range = Duration Range(C1) N Duration_range(C2)
if (Range = Null) then Inconsistent, goto stage 4
Ind = Indeterminism(C1) + Indeterminism(C2)
Free = Flexibility(C1) + Flexibility(C2)
if (Ind>Free) then Inconsistent, goto stage 4
if (C1 not free) or (C2 not free)

then if (Adapt (C1i, C2) = True)

then success, proceed with the next cycle
else Inconsistent, goto stage 4

The function Adapt (C1, C2) looks for a correspondence between contingent intervals contained in C1 and
C2 and forthcoming flexible intervals in a way that recovers all the indeterministic behaviour. Here again some
trivial cases arise, for example two chains can not be ended by contingent intervals since one can not guarantee
that their two end-points finish at the same time. In the general case, for each contingent interval ¢, the choice
of corresponding recovery interval is based on the following hint : if ¢ belongs to C1 and the duration of C1 is
less than the duration of C2, we try first to find a recovery interval in C1 so that the overall durations of C1
and C2 gets closer, otherwise we look for one in C2. At the end of this stage, if all the contingent intervals have



been recovered and the durations of C1 and C2 are still intersecting we have found a solution, in all the other
cases our method fails (jump to stage 4).

Stage 4 (Restoring the previous state of the document): In this stage, an inconsistency was detected,
therefore we restore the state of the document as it was before step 1, and an error is then reported to the
author.

This algorithm is applied to check the consistency of both the entire document and single composite objects
defined by the user. Composite objects are considered, at each level of the logical structure, as a single interval
with its own total duration (having free and contingent parts). This total duration corresponds to maximum
duration of the BEGIN-END paths in the DAG.

4.2 Discussion

Our current algorithm is a first step in extending the temporal synchronization methods to handle indeter-
ministic behaviour of multimedia objects. We have shown that this kind of object can be included in the model
by considering contingent intervals. This latter class of interval models a wide range of multimedia objects like
unpredictable delays in media delivery and user interactions. As we have shown through simple examples, one
can handle such situations using similar techniques. Our algorithm based on the Adapt function is not minimal.
Since we use an opportunistic method to find recovery intervals tackling unpredictable delays, some of the con-
figurations are not solved even if a solution exists. We are currently investigating recent methods developed in

planning which provide minimal solutions®*.3

5 CONCLUSION

We presented in this paper a temporal model that allows the construction of consistent temporal presenta-
tions. The consistency checking is performed using qualitative as well as quantitative temporal relations through
constraint networks. The user interface is based on the set of operators introduced by Allen, extended to the
quantitative aspect of intervals, delays and unpredictable behaviour. In particular, our model allows the repre-
sentation of indeterministic objects which have unpredictable durations. In the design of this algorithm, we put
the emphasis on the following aspects :

e The flexibility of the temporal specifications by allowing the user to specify free delays and durations of
multimedia objects.

e The encapsulation which fits the intuitive organization of the document as a set of logical entities. This
aspect allows us to reduce the complexity of the abstract representation of the document since the temporal
constraints are first solved within composite objects.

e The consistency checking by the use of an internal representation of the document as a labelled DAG
holding the underlying numerical constraints. This DAG allows the user to identify precisely the sources
of inconsistencies. The consistency of a given specification is therefore reduced to the compatibility of
incrementally produced temporal chains allowing higher efficiency.?

This work is currently being undertaken as part in the Opera project. The goal of this project is to develop
an editorial environment for the construction, manipulation and storage of complex multimedia documents. The
Opera system is based on a logical document structuring scheme that was introduced and tested during the
development of the Thot editor.!?
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