
On the Efficient Distributed Evaluation of
SPARQL Queries

Damien Graux

Supervisor: Nabil Layäıda
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Context & Objectives driven by an example

A practical usecase:

What did you miss (touristically) last time you travelled (by plane)?

More specifically: “Is it possible to sightsee at stopovers?”
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Context & Objectives driven by an example

Context:

Large datasets available

Heterogeneous data

Objectives:

Efficiently request these datasets

Aggregate results to build complex applications
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My PhD topic

Focuses

1 Focusing on evaluating SPARQL queries,

2 On large amounts of RDF data,

3 In a distributed context.

Problem

How to design efficient distributed SPARQL evaluators?
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Section 1

RDF & SPARQL
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Resource Description Framework [HM04]
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subject predicate object
Dutch School type Museum
Dutch School creationDate 2016
Dutch School use Louvre
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Resource Description Framework [HM04]

RDF essentials

rdf is a w3c standard

rdf designed to provide, share and exchange datasets

An rdf graph is a set of rdf triples

An rdf triple has three components:

a subject (s)
a predicate (p)
a object (o)
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SPARQL Protocol and RDF Query Language [G+13]
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SELECT ?s ?g WHERE {
?s type Museum
?g type Painter
?s shows ?g

}
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(Ducth School,Hals), (Ducth School,Vermeer),
(Ducth School,Van Dyck)
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SPARQL Protocol and RDF Query Language [G+13]

Considered SPARQL Fragment

Basic Graph Pattern (BGP) fragment composed of conjunctions of
Triple Patterns (TPs).

Triple Pattern (TP)

SELECT ?s ?g WHERE {
?s type Museum
?g type Painter
?s shows ?g

}

One BGP

Composed of 3 TPs

Solutions

A candidate solution satisfies a TP when the replacement of the
variables of the TP with their value corresponds to a triple that
appears in the RDF data.

A query solution is a candidate solution that satisfies all the TPs of
the query.
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Section 2

Distributed Frameworks
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MapReduce Strategy

The paradigm

Parallel processing of massive datasets [DG08]

A job has two separate phases:

1 Map phase which takes k/v pairs, performs computations and
returns k/v pairs

2 Reduce phase where k/v pairs from the Map are ingested to return a
single set of results.

Intermediate results sometimes need to be shuffled – exchanged
and/or merge-sorted – across the network to be reduced.

In brief, MapReduce

proposes to not only consider dataset as distributed and fragmented on
each machine but also to develop the computation as small blocks (the
Map part) which are finally grouped together (the Reduce part).
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Distributed Frameworks

Hadoop

Framework for distributed systems based on MapReduce

It is twofold:

a distributed file system (including replication)
a MapReduce library

Cluster Computing Frameworks

Provide an interface with implicit data parallelism and fault-tolerance

Offer a set of low-level functions e.g. map, join, collect. . .

For instance: PigLatin, Flink, Spark . . .
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Apache Spark[ZCD+12]

Spark in a nutshell

Master/Worker(s) Architecture

Various file system sources supported e.g. HDFS

One of the most active Apache project e.g. 1000+ contributors

2002 2004 2006 2008 2010 2012 2014 2016

2002
MapReduce @ Google

2004
MapReduce Paper

2006
Hadoop @ Yahoo!

2008
Hadoop Summit

2010
Spark Open-Source

May 2014
Apache Spark 1.0

July 2016
Apache Spark 2.0
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Apache Spark[ZCD+12]

Spark in a nutshell

Master/Worker(s) Architecture

Various file system sources supported e.g. HDFS

One of the most active Apache project e.g. 1000+ contributors

Resilient Distributed Datasets

Distributed object collections

Split into partitions stored in RAM or disks

Created through deterministic operations

Fault-tolerant: automatically re-built
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Section 3

SPARQL Evaluators
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Jumble of Evaluators

4store
CouchBaseRDF
BitMat
YARS
Hexastore
CliqueSquare
RYA
Parliament
Virtuoso
RDF-3X
. . .
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Jumble of Evaluators

. . . Some Previous Surveys

When? Who? What?
2001 Barstow [Bar01] Focuses on open-source solutions; and

looks at some of their specificities
2002 Beckett [Bec02] Updates
2003 Beckett [BG03] Focuses on the use of relational database

management systems to store rdf
datasets

2004 Lee [Lee04] Updates
2012 Faye [FCB12] Lists the various rdf storage approaches

mainly used by single-node systems
2015 Kaoudi [KM15] Presents a survey focusing only on rdf

in the clouds
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RDF Storage Strategies

rdf Storage Strategies

native

In-memory On Disks

Standalone Embedded

non-native

Web APIs DBMS-based

Schema-Carefree

Triple Table

Schema-Aware

Vertical Partitioning Property Table
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Distributed Evaluation Methods

Distributed rdf Storage Methods

Federation

Horizontal Fragmentation Graph Partitioning

Key-Value Stores

Triple-based Graph-based

Independent Distributed File System

Triple Table Vertical Partitioning Property Table
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Distributed Evaluation Methods

Distributed rdf Storage Methods

Federation

Horizontal Fragmentation Graph Partitioning

Key-Value Stores

Triple-based
RYA

Graph-based

Independent
4store

CouchBaseRDF

Distributed File System

Triple Table
PigSPARQL
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S2RDF
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Distributed SPARQL Evaluator State-of-the-art Summary

Observations

1 Multiple RDF storage strategies

2 Various methods to distribute data and to compute queries

How to pick an efficient evaluator?

Experimental Evaluation!
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Section 4

Multi-Criteria Experimental Ranking
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Experimental Studies

When? Who? What?
2002 Magkanaraki [MKA+02] Reviews solutions dealing with on-

tologies
2009 Stegmaier [SGD+09] Reviews solutions according to

several parameters such as their
licenses, their architectures and
compares them using a scalable
test dataset

2013 Cudré [CMEF+13] Realizes an empirical study of dis-
tributed sparql evaluators (na-
tive rdf stores and several NoSQL
solutions they adapted)
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Popular Benchmarks

Name SPARQL Fragment
LUBM [GPH05] BGP

WatDiv [AHÖD14] BGP
SP2Bench [SHLP09] BGP + FILTER UNION OPTIONAL + Solu-

tion Modifiers + ASK

BolowgnaB [DEW+11] BGP + aggregator (e.g. COUNT)
BSBM [BS09] BGP + FILTER UNION OPTIONAL + So-

lution Modifiers + Logical negation +
CONSTRUCT

DBPSB [MLAN11] Use actually posed queries against dbpedia

RBench [QÖ15] Generate queries according to considered
datasets

17 / 34



RDF & SPARQL Distributed Frameworks SPARQL Evaluators Experiments Distributed Evaluation Conclusion

Popular Benchmarks

Name SPARQL Fragment
LUBM [GPH05] BGP

WatDiv [AHÖD14] BGP
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Contrib. 1 – Experimental Comparative Analysis

Considered Benchmarks

LUBM: generated datasets and 14 queries (Q1-Q14)

WatDiv: generated datasets and 20 queries

Competitors

Selection criteria: OpenSource, Popular or Recent

Two types of evaluators:

Conventional (with preprocessing): 4store, CumulusRDF,
CouchBaseRDF, RYA, CliqueSquare and S2RDF
Direct: PigSPARQL
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Contrib. 1 – Obtained Results

We learned:

1 Considering the same dataset, loading times are spread over several
magnitude orders

2 For the same query on the same dataset, elapsed times can differ
very significantly

3 Even with large datasets, most queries are not harmful per se, i.e.
queries that incurr long running times with some implementations
still remain in the “comfort zone” for other implementations

19 / 34
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Contrib. 1 – Obtained Results

With the following RDF datasets:

Dataset Number of Triples Original File Size
WatDiv1k 109 million 15 GB
Lubm1k 134 million 23 GB

Lubm10k 1.38 billion 232 GB

4store CliqueSquare RYA

S2RDF CouchBaseRDF CumulusRDF

watdiv1k lubm1k lubm10k
103

104

105

T
im

e(
s)

Figure : Preprocessing Time.
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Contrib. 1 – Obtained Results

4store CliqueSquare CouchBaseRDF CumulusRDF
PigSPARQL RYA S2RDF

Q1 Q2 Q3
100

101

102

103

104

T
im

e(
s)

Figure : Query Response Time with
Lubm1k (134 million triples).

Q1

SELECT ?X WHERE {
?X rdf:type ub:GraduateStudent .

?X ub:takesCourse GraduateCourse0

}

Q2

SELECT ?X ?Y ?Z WHERE {
?X rdf:type ub:GraduateStudent .

?Y rdf:type ub:University .

?Z rdf:type ub:Department .

?X ub:memberOf ?Z .

?Z ub:subOrganizationOf ?Y .

?X ub:undergraduateDegreeFrom ?Y

}

Q3

SELECT ?X WHERE {
?X rdf:type ub:Publication .

?X ub:publicationAuthor AssistantProfessor0

}
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Contrib. 1 – Obtained Results

C1C2C3F1F2F3F4F5L1L2L3L4L5S1S2S3S4S5S6S7

100

101

(a) 4store

C1C2C3F1F2F3F4F5L1L2L3L4L5S1S2S3S4S5S6S7

102

102.5

(b) S2RDF

C1 F1F2F3F4F5L1L2L3L4L5S1S2S3S4S5S6S7

101

102

103

104

(c) RYA

C1C2C3F1F2F3F4F5L1L2L3L4L5S1S2S3S4S5S6S7

102

103

(d) PigSPARQL

Figure : Obtained results with WatDiv1k.
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Contrib. 1 – Obtained Results

We learned:

1 Considering the same dataset, loading times are spread over several
magnitude orders

2 For the same query on the same dataset, elapsed times can differ
very significantly

3 Even with large datasets, most queries are not harmful per se, i.e.
queries that incurr long running times with some implementations
still remain in the “comfort zone” for other implementations

Ok, but. . .

. . . how to rank evaluators? /

19 / 34
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An extended set of metrics

Usual metrics:

Time always

Disk Footprint only sometimes

Our additions:

Disk Activity new

Network Traffic new

Resources: CPU, RAM, SWAP new
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Contrib. 2 – Multi-Criteria Reading Grid

Criteria List

Velocity: the fastest possible answers
Query Time

Resiliency: trying to avoid as much as possible to recompute
everything when a machine fails

Footprint

Immediacy: evaluating some sparql queries only once
Preprocessing Time

Dynamicity: dealing with dynamic data
Preprocessing Time & Disk Activity

Parsimony: minimizing some of the resources
CPU, RAM, . . .
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Section 5

Efficient Distributed SPARQL Evaluation

23 / 34



RDF & SPARQL Distributed Frameworks SPARQL Evaluators Experiments Distributed Evaluation Conclusion

Contrib. 3 – Efficient Distributed SPARQL evaluation

We designed:

SPARQLGX

SDE

RDFHive

Available from: <https://github.com/tyrex-team>
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Contrib. 3 – Efficient Distributed SPARQL evaluation

These evaluators in nutshells:

SPARQLGX a distributed SPARQL evaluator with Apache Spark

SDE a direct SPARQL evaluator with Apache Spark

RDFHive a direct evaluation of SPARQL with Apache Hive

Available from: <https://github.com/tyrex-team>
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Contrib. 3 – Efficient Distributed SPARQL evaluation

Considering the reading grid, we have:

SPARQLGX velocity, resiliency

SDE immediacy, dynamicity, resiliency

RDFHive immediacy, dynamicity, resiliency, parsimony

Available from: <https://github.com/tyrex-team>
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Details of SPARQLGX

1 Selected storage model

2 SPARQL translation process

3 Optimization strategies
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Vertical Partitioning [Abadi et al. 2007]
SPARQLGX Storage Model

RDF predicates carry the semantic information, thereby:

Limited number of distinct predicates e.g. few hundreds [Gallego et
al. 2011]

Predicates rarely variable in queries [Gallego et al. 2011]

Vertical Partitioning

Splitting by predicate and saving two-column files

Advantages

Natural compression and indexing

Straightforward implementation
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Vertical Partitioning [Abadi et al. 2007]
SPARQLGX Storage Model

dataset
Dutch School type Museum
Dutch School creationDate 2016
Dutch School use Louvre

Louvre type Museum
Rembrandt type Painter

Hals type Painter
Vermeer type Painter

Van Dyck type Painter
Collection shows Rembrandt

Dutch School mainTopic Rembrandt
Dutch School shows Rembrandt
Dutch School shows Hals
Dutch School shows Vermeer
Dutch School shows Van Dyck

type.txt
Dutch School Museum

Louvre Museum
Rembrandt Painter

Hals Painter
Vermeer Painter

Van Dyck Painter

shows.txt
Collection Rembrandt

Dutch School Rembrandt
Dutch School Hals
Dutch School Vermeer
Dutch School Van Dyck

creationDate.txt
Dutch School 2016

use.txt
Dutch School Louvre

mainTopic.txt
Dutch School Rembrandt
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SPARQL Translation Process
SPARQL→Scala

Dealing with one TP . . .

textFile to access relevant files

filter to keep matching triples

?s type Museum . textFile(“type.txt”)
.filter{case(s,o)=>o.equals(“Museum”)}
.map{case(s,o)=>s}

. . . with a conjunction of TPs

Translate each TP

Join them one by one
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SPARQL Translation Process
SPARQL→Scala

?s type Museum .
?g type Painter .
?s shows ?g

tp1=sc.textFile(‘‘type.txt’’)

.filter{case(s,o)=>o.equals(‘‘Museum’’)}

.map{case(s,o)=>s}

.keyBy{case(s)=>s}

tp2=sc.textFile(‘‘type.txt’’)

.filter{case(g,o)=>o.equals(‘‘Painter’’)}

.map{(g,o)=>g}

.keyBy{case(g)=>g}
tp3=sc.textFile(‘‘shows.txt’’)

.keyBy{case(s,g)=>(s,g)}

bgp=tp1.cartesian(tp2).values

.keyBy{case(s,g)=>(s,g)}

.join(tp3).value
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Join Order
SPARQL→Scala

To minimize size of intermediate results, we try:

1 Avoiding cartesian product

2 Exploiting statistics on data

Selectivity

Selectivity of an element located at pos is: either its occurrence
number at pos if it is a constant or the total number of triples if it is
a variable.

Selectivity of a TP is the min of its element selectivities.

We just sort the TPs of a BGP in ascending order of their selectivities.
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Direct SPARQL Evaluation
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Direct SPARQL Evaluation

SDE (SPARQLGX as Direct Evaluator)

Directly considering the initial rdf dataset

Designed to evaluate on single query

RDFHive

Based on Apache Hive (relational solution on the HDFS)

Translation of queries into Hive-QL

Offers the possibility of merging relational and rdf datasets
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Direct SPARQL Evaluation

4store CliqueSquare CouchBaseRDF PigSPARQL RDFHive

RYA S2RDF SDE SPARQLGX

1 10 20 30 40 50 60 70 80 90 100
102

103

104

105

106

Figure : Tradeoff between preprocessing and query evaluation times (seconds)
linear WatDiv.
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Section 6

Conclusion & Perspectives
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Conclusion

Summary of Contributions

1 Update comparative Cudré et al. survey Submitted

2 Provide a new reading grid (new set of metrics) Submitted

3 Develop several distributed SPARQL evaluators:

SPARQLGX ISWC 2016
SDE ISWC 2016
RDFHive

Reusability

Openly available under the CeCILL license from:
<https://github.com/tyrex-team>
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Conclusion

Velocity
Lubm1k

Velocity
WatDiv1k

Immediacy

Parsimony

Dynamicity Resiliency

4store
CliqueSquare
CouchBaseRDF
CumulusRDF
PigSPARQL
RYA
S2RDF
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I – Perspectives: SPARQL Benchmarking

Uniform test-suite for dynamicity Short-Term

Designing a benchmark for the SPARQL UPDATE fragment

Staying up to date Continuous

Adding new evaluators

Considering other test suites

Benchmarking on other clusters

Varying the number of nodes Mid-Term

Validating our results on larger clusters

New kind of limitation?
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II – Perspectives: SPARQL Evaluators

Improving our evaluators On going

Extending the supported SPARQL fragment

Improving the storage models

Designing criteria-specific evaluators Mid-Term

Implementing a parsimonious and resilient evaluator

Developing evaluators in highly dynamic context

Storage-adaptative distributed evaluators Long-Term

Adapting the idea of Aluç et al. [AÖD14] in a distributed context
Considering SPARQL query shapes
=⇒ Choosing its storage model dynamically!
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III – Perspectives: Integration in ETL systems

Designing SPARQL pipeline Mid-Term

Using CONSTRUCT to refine existing RDF datasets

Aggregating several sources into a single one

Creating heterogeneous data pipeline Mid/Long-Term

We provide a prototype for trip planning ISWC 2016

Development of a dedicated language
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Hadoop
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Appendices

Concept
Map Reduce

HDFS

Données

Données

Données

Données

Map

Map

Map

Map

Paire
<K,V>

Paire
<K,V>

Paire
<K,V>

Reduce

Reduce

Reduce

Résultats
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Architecture
Spark

Driver Program

SparkContext Cluster Manager

Worker Node

Executor Cache

TaskTask

HDFS Datanode

Worker Node

Executor Cache

TaskTask

HDFS Datanode

1 Resource allocation via cluster manager through master

2 Executors acquisition on the cluster nodes

3 Code transfert from the application to the executors

4 Task transfert to the executors
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Technical Details

Cluster of 10 nodes with 17GB of RAM each

Dataset Number of Triples Original File Size
WatDiv1k 109 million 15 GB
Lubm1k 134 million 23 GB

Lubm10k 1.38 billion 232 GB
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